Supporting Information

Metal-free Synthesis of Nitriles from Aldehydes and Ammonium by Visible-Light Photocatalysis

 $Xu~He^{1,2\dagger}$, Yi- $Wen~Zheng^{1,3\dagger}$, $Bin~Chen^{1,2*}$, $Ke~Feng^{1,2}$, Chen- $Ho~Tung^{1,2}$ & Li- $Zhu~Wu^{1,2*}$

¹Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

² School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China

³BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518107, China

 † These authors contributed equally to this work

Contents

1.	General Information	2
2.	Experimental Procedures	3
3.	Mechanism Studies	6
4.	References	9
5.	Characterization of products (II-1 ~ II-35)	10
6.	NMR Spectra	20

1. General Information

All reagents and solvents were commercially available unless individually noted. All the solvents used in photocatalyzed reactions were anhydrous solvents. Phenylmethanimine-BEt3 and the 4CzIPN photocatalyst were prepared as previously reported [1-3]. The 440 nm blue LEDs were used as light sources. The products were isolated by silica column chromatograph (200-300 meshes silica gel). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded using a Bruker Advance DPX instrument (400, 101 and 377 MHz, respectively) with tetramethylsilane (TMS) as an internal standard. Data for ¹H NMR was presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet, br = broad), coupling constant J (Hz) and integration. Data for 13 C NMR and 19 F NMR was reported in terms of chemical shift relative to different deuterium reagents. Mass spectra was recorded using a Trio-2000 GC-MS spectrometer. GC analysis was performed using He as the carrier gas with capillary column (30 m \times 0.25 mm \times 0.33 μ m) and a flame ionization detector (FID) using *n*-tetradecane as an internal standard. Conversions and yields that were determined by ¹H NMR were obtained from the crude reaction mixture by using the diphenyl acetonitrile as an internal standard. UV-Vis absorption and luminescent quenching were performed on U-3900, F-4600 and LP-920. Cyclic voltammetry was performed on a CHI660E.

2. Experimental Procedures

2.1 The Optimization of Reaction Conditions

Table S1. The Optimization of Reaction Conditions a)

Entry	N Sources	Solvent	Yield of II-1 b)
1	NH ₄ OAc c)	CH ₃ CN	75%
2	NH ₂ COONH ₄	CH ₃ CN	39%
3	$(NH_4)_2CO_3$	CH ₃ CN	60%
4	$NH_3(g)$	CH ₃ CN	71%
5	NH ₄ Cl	CH ₃ CN	n.r.
6	NH ₂ OH•HCl	CH ₃ CN	n.d.
7	$\mathrm{NH_{2}OH}$	CH ₃ CN	n.d.
,	(50% aq. soln.)		
8	NH ₄ OAc	CH ₃ OH	trace
9	NH ₄ OAc	EtOH	trace
10	NH ₄ OAc	DMF	trace
11	NH ₄ OAc	DCM	4%
12	NH ₄ OAc	THF	trace

a) Reactions were carried out at 0.2 mmol scale in 3 mL solvent with 2 mol% 4CzIPN, 50 mol% TEMPO, 4 equiv. nitrogen sources, 50 mg 4 Å molecular sieves under air upon 440 nm blue LEDs irradiation for 12 h. b) Yields were obtained from the crude and filtered reaction mixture by GC-FID with *n*-tetradecane as the internal standard. c) 2.5 equiv. NH₄OAc.

2.2 The General Procedure for Photoreaction

In an 8 mL reaction tube, 4CzIPN (4×10⁻³ mmol, 3.16 mg), NH₄OAc (0.8 mmol. 61.7 mg), TEMPO (Cocat.) (0.1 mmol, 15.6 mg) and 50 mg 4Å molecular sieves were dissolved and blended in 3 mL CH₃CN. And then the aldehyde (0.2 mmol) was added and the reaction mixture was vigorously stirred for 30 min before irradiation. After that, the mixture was exposed to air and irradiated at room temperature by use of 440 nm blue LEDs. Upon 12 h irradiation, the yield of nitrile was obtained from the filtrated crude reaction mixture by ¹H NMR or GC-FID using diphenyl acetonitrile or *n*-tetradecane as the internal standard.

2.3 Scaled-up Photoreaction

In a 100 mL round-bottom flask, 4CzIPN (4×10⁻² mmol, 31.6 mg), NH₄OAc (8 mmol, 617 mg), TEMPO

(1 mmol, 156 mg) and 250 mg 4Å molecular sieves were dissolved and blended in 30 mL CH₃CN. And then the 4-biphenylcarboxaldehyde **I-5** (2 mmol, 364.4 mg) was added and the reaction mixture was vigorously stirred for 30 min before irradiation. After that, the mixture was exposed to air and irradiated at room temperature by use of 440 nm blue LEDs. Upon 36 h irradiation, the yield of [1,1'-biphenyl]-4-carbonitrile **II-5** was obtained from the filtrated crude reaction mixture by ¹H NMR using diphenyl acetonitrile as the internal standard. The crude product was purified by silica gel column chromatography (petroleum ether/DCM 5/1 to 2/1) to afford **II-5** as white solid (308.2 mg, 86% yield).

Scheme S1 The scaled-up experiment. ¹H NMR yield (isolated yield) were showed under the II-5.

2.4 The Oxidation of the Alcohol to Nitrile

Scheme S2 The oxidation of the alcohol to nitrile.

2.5 The Synthesis of Phenylmethanimine-BEt₃

The Phenylmethanimine-BEt₃ was prepared as previously reported [1-2]. ¹H NMR (600 MHz, CDCl₃, ppm) δ : 9.34 (d, J = 21.4 Hz, 1H), 8.09 (d, J = 21.4 Hz, 1H), 7.68 – 7.52 (m, 5H), 0.75 (t, J = 7.8 Hz, 9H), 0.34 (t, J = 7.8 Hz, 6H). ¹¹B NMR (128 MHz, CDCl₃, ppm) δ : -2.00.

Step 1:

Step 2:

 $\begin{tabular}{ll} Scheme S3 & The synthesis of phenylmethanimine-BEt_3. \end{tabular}$

3. Mechanism Studies

3.1 Cyclic Voltammetry (CV) Experiments

A CH₃CN solution (3×10^{-4} M) of **I-1** and a CH₃CN solution (3×10^{-4} M) of TEMPO was prepared respectively with NBu₄PF₆ (0.1 M) as the supporting electrolyte. The cyclic voltammogram was obtained using a glassy carbon as working electrode, a Pt strip as counter electrode, and a saturated calomel electrode as reference electrode. Scan rate = 0.1 V/s, range from 0 V to 3.0 V.

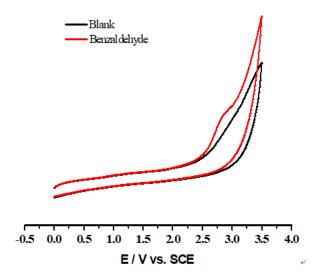


Figure S1 The cyclic voltammetry spectra of benzaldehyde I-1 shows an oxidative potential at 2.83 V vs. SCE in CH₃CN.

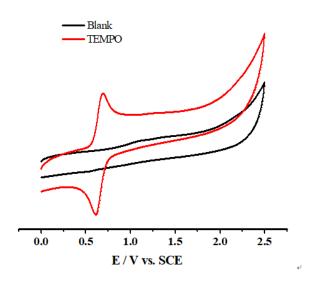
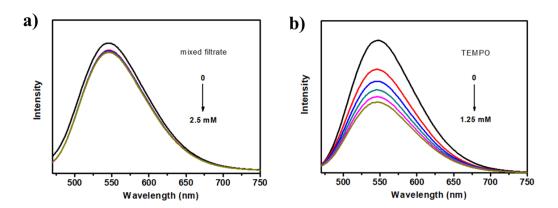



Figure S2 The cyclic voltammetry spectra of TEMPO in CH₃CN.

3.2 Spectroscopy Experiments

The mixed filtrate in **figure S3a** was prepared as follow. Benzaldehyde (0.2 mmol), NH₄OAc (0.8 mmol) and 4 Å MS (50 mg) were blended in CH₃CN (3 mL) and the mixture was stirred for 30 min, after that the molecular sieve was filtered out. The concentrations in **figure S3a** were calculated by the concentrations of benzaldehyde.

Figure S3 Luminescent quenching spectra of 4CzIPN (1×10⁻⁵ M) in the presence of **a)** different volume of mixed filtrate and **b)** different concentrations of TEMPO in CH₃CN with excitation at 440 nm.

3.3 The detection of H₂O₂

After the photoreaction was finished, 5 mL dichloromethane was added to the reaction mixture, and the resulting solution was filtered. Then 2 mL of saturated sodium carbonate aqueous solution was introduced into the solution to extract H₂O₂. Then, 2.5 ml of acetic acid, 2 g of NaI and 35 ml of isopropanol were injected into the H₂O₂ aqueous solution (**Figure S4**, left). After refluxing for 20 min, the solution color turned yellow (**Figure S4**, right), indicating that the H₂O₂ was generated during the reaction [4].

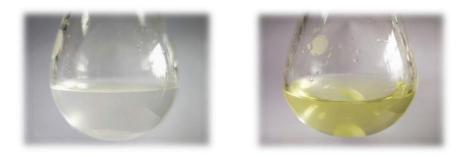


Figure S4 The detection of H₂O₂.

3.4 The Light On-off Experiments

In order to explore whether the reaction is a chain reaction or not, the light on-off experiments were carried out. Five parallel solutions were prepared with **I-1** as the template substrate under the standard condition. The solutions were alternately irradiated for 30 min and shielded from light for 30 min. The plot of the yield of **II-1** vs the reaction time was obtained below (**Figure S5**). **II-1** was only formed during periods of constant irradiation, which suggested that a chain-propagation-type mechanism was unlikely to be involved.

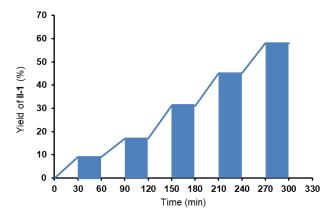


Figure S5 The light on-off experiments.

4. References

- 1. Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc, 2007, 129: 15398-15404
- 2. Chen GH, Brown HC. J. Am. Chem. Soc, 2000, 122: 4217-4218
- 3. Luo J, Zhang J. ACS Catal, 2016, 6: 873-877
- 4. Meng QY, Gao XW, Lei T, Liu Z, Zhan F, Li ZJ, Zhong JJ, Xiao H, Feng K, Chen B, Tao Y, Tung CH, Wu LZ. Sci. Adv, 2017, 3: e1700666

5. Characterization of products (II-1 ~ II-35)

Colorless volatile liquid. Isolated yield: 33.0 mg, 80%. petroleum ether/ $CH_2Cl_2 = 5/1-2/1$.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.69 – 7.41 (m, 5H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 132.80, 132.14, 129.15, 118.84, 112.46.

HRMS (EI): m/z calculated for C₇H₅N m/z 103.0422, found 103.0422.

4-propylbenzonitrile (II-2)

Colorless liquid. Isolated yield: 48.2 mg, 83%. petroleum ether/ $CH_2Cl_2 = 5/1-2/1$.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.54 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 7.7 Hz, 1H), 2.62 (t, J = 7.6 Hz, 2H), 1.85 – 1.46 (sex, J = 7.5 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 148.44, 132.23, 129.39, 119.23, 109.86, 38.27, 24.16, 13.75.

HRMS (EI): m/z calculated for $C_{10}H_{11}N$ m/z 145.0891, found 145.0889.

Colorless liquid. Isolated yield: 55.4 mg, 87%. petroleum ether/ $CH_2Cl_2 = 5/1-2/1$.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.55 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 2.53 (d, J = 7.2 Hz, 2H), 1.88 (sep, J = 6.9 Hz, 1H), 0.90 (d, J = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 147.47, 132.07, 129.97, 119.20, 109.87, 45.62, 30.13, 22.34.

HRMS (EI): m/z calculated for $C_{11}H_{13}N$ m/z 159.1048, found 159.1050.

White soild. Isolated yield:48.8 mg, 96%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.55 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 3.23 (s, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 132.81, 132.16, 127.14, 118.37, 112.49, 82.00, 81.67.

HRMS (EI): m/z calculated for C₉H₅N m/z 127.0422, found 127.0418.

White soild. Isolated yield: 60.4 mg, 83%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.72 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 7.9 Hz, 2H), 7.54 – 7.40 (m, 3H).

 13 C NMR (101 MHz, CDCl₃, ppm) δ : 145.67, 139.18, 132.61, 129.16, 128.71, 127.75, 127.25, 118.96, 110.96.

HRMS (EI): m/z calculated for C₁₃H₉N m/z 179.0735, found 179.0725.

Colorless oil. Isolated yield: 73.6mg, 93%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.60 (d, J = 8.6 Hz, 2H), 7.41 (t, J = 7.8 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 7.07 (d, J = 8.2 Hz, 2H), 7.00 (d, J = 8.6 Hz, 2H).

 13 C NMR (101 MHz, CDCl₃, ppm) δ: 161.77, 154.95, 134.24, 130.34, 125.25, 120.51, 118.93, 118.05, 105.97.

HRMS (EI): m/z calculated for $C_{13}H_9NO$ m/z 195.0684, found 195.0680.

White soild. Isolated yield: 41.4 mg, 65%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.57 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 8.6 Hz, 2H), 6.02 (m, 1H), 5.41 (d, J = 17.3 Hz, 1H), 5.33 (d, J = 10.5 Hz, 1H), 4.58 (d, J = 5.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 161.97, 134.07, 132.21, 119.26, 118.57, 115.59, 104.25, 69.13.

HRMS (EI): m/z calculated for $C_{10}H_9NO$ m/z159.0684, found 159.0679.

Colorless liquid. Isolated yield: 48.6 mg, 65%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.73 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 152.36 (d, J = 1.8 Hz), 134.32, 121.37 (d, J = 0.9 Hz), 124.19 –

116.45 (q, J = 133.42 Hz), 117.77, 111.00.

¹⁹F NMR (377 MHz, CDCl₃, ppm) δ : -57.74.

HRMS (EI): m/z calculated for C₈H₄F₃NO m/z 187.0245., found187.0240.

White soild. Isolated yield: 66.9 mg, 80%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.57 (d, J = 7.7 Hz, 1H), 7.48 (m, 3H), 7.36 (m, 3H), 7.01 (m, 2H), 5.21 (s, 2H).

¹³C NMR (101 MHz, CDCl₃, ppm) *δ*: 160.47, 135.85, 134.30, 133.94, 128.81, 128.30, 127.10, 121.21, 116.43, 113.21, 102.78, 70.84.

HRMS (EI): m/z calculated for C₁₄H₁₁NO m/z 209.0841, found 209.0837.

Colorless liquid. Isolated yield: 57.3mg, 90%. petroleum ether/ $CH_2Cl_2=5/1-1/1$.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.72 – 7.36 (m, 2H), 7.18 – 6.62 (m, 2H), 6.04 (m, 1H), 5.47 (d, J = 17.3 Hz, 1H), 5.32 (d, J = 10.6 Hz, 1H), 4.66 (d, J = 4.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 160.33, 134.31, 133.87, 131.98, 120.99, 118.32, 116.50, 112.76, 102.35, 69.55.

HRMS (EI): m/z calculated for C₁₀H₉NO m/z159.0684, found 159.0679.

Pale yellow liquid. Isolated yield: 67.9mg, 87%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.39 (m, 7.1 Hz, 4H), 7.28 – 7.16 (m, 3H), 7.04 (d, J = 8.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃, ppm) δ : 158.31, 155.66, 130.77, 130.30, 126.51, 124.82, 122.88, 121.20, 119.88, 118.36, 113.68.

HRMS (EI): m/z calculated for C₁₃H₉NO m/z 195.0684, found 195.0680.

Colorless volatile liquid. Isolated yield: 29 mg, 60%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.68 (dd, J = 8.0, 5.4 Hz, 2H), 7.18 (t, J = 8.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 165.15 (d, J = 256.5 Hz), 134.78 (d, J = 9.3 Hz), 118.10, 116.95 (d, J = 22.7 Hz), 108.70 (d, J = 3.7 Hz).

¹⁹F NMR (377 MHz, CDCl₃, ppm) δ : -102.45.

HRMS (EI): m/z calculated for C_7H_4FN m/z 121.0328, found 121.0323.

White solid. Isolated yield: 47.9 mg, 87%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.60 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H).

¹³C NMR (400 MHz, CDCl₃, ppm) δ : 139.68, 133.50, 129.82, 118.07, 110.95.

HRMS (EI): m/z calculated for C₇H₄ClN m/z 137.0032, found 137.0031.

White solid. Isolated yield: 56.1 mg, 77%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.63 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 133.49, 132.73, 128.09, 118.12, 111.36.

HRMS (EI): m/z calculated for C_7H_4BrN m/z 180.9527, found 180.9525.

White solid. Isolated yield: 38.3 mg, 66%. petroleum ether/ EtOAc = 10/1-5/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.04 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 2.64 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 196.63, 140.09, 132.66, 128.83, 118.04, 116.59, 26.88.

HRMS (EI): m/z calculated for C_9H_7NO m/z 145.0528, found 145.0527.

Colorless liquid. Isolated yield: 47.2 mg, 69%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.81 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 8.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl3, ppm) δ : 134.75 (q, J = 33.4 Hz), 132.83, 126.34 (q, J = 3.7 Hz), 127.27 – 119.13 (q, J = 273.9 Hz), 117.55, 116.27.

¹⁹F NMR (377 MHz, CDCl₃, ppm) δ : -63.54.

HRMS (EI): m/z calculated for $C_8H_4F_3N$ m/z 171.0296, found 171.0289.

White solid. Isolated yield: 38.4 mg, 75%, petroleum ether/EtOAc = 10/1-5/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.79 (s, 4H).

¹³C NMR (400 MHz, CDCl₃, ppm) δ : 132.93, 117.12, 116.90.

HRMS (EI): m/z calculated for $C_8H_4N_2 m/z$ 128.0374, found 128.0372.

White solid. Isolated yield: 37.2 mg, 63%. petroleum ether/EtOAc=10/1-5/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.35 (d, J = 8.5 Hz, 2H), 7.89 (d, J = 8.5 Hz, 1H).

¹³C NMR (400 MHz, CDCl₃, ppm) δ : 150.18, 133.59, 124.41, 118.47, 116.90.

HRMS (EI): m/z calculated for C₇H₄N₂O₂ m/z 148.0273, found 148.0270.

White solid. Isolated yield: 46.8 mg, 79%. petroleum ether/EtOAc = 10/1-5/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.54 (s, 1H), 8.48 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 7.7 Hz, 1H), 7.74 (t, J = 8.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 148.40, 137.70, 130.78, 127.65, 127.36, 116.64, 114.32.

Yellow solid. Isolated yield: 35.0 mg, 59%. petroleum ether/ CH₂Cl₂/EtOAc = 3:2:0.5

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.38 – 8.29 (m, 1H), 7.96 – 7.90 (m, 1H), 7.90 – 7.78 (m, 2H).

 13 C NMR (101 MHz, CDCl₃, ppm) δ: 148.72, 135.72, 134.42, 133.82, 125.68, 115.03, 108.24.

HRMS (EI): m/z calculated for C₇H₄N₂O₂ m/z 148.0273, found 148.0274.

Colorless liquid. Isolated yield: 76.0 mg, 83%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.88 (s, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.13 (t, J = 7.9 Hz, 1H)..

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 141.95, 140.46, 131.25, 130.61, 117.13, 114.28, 93.94.

HRMS (EI): m/z calculated for C₇H₄IN m/z 228.9388, found 228.9385.

White solid. Isolated yield: 51.6 mg, 75%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.61 (d, J = 8.4 Hz, 1H), 7.54 (s, 1H), 7.37 (d, J = 8.4 Hz, 1H).

 13 C NMR (101 MHz, CDCl₃, ppm) δ : 140.22, 137.98, 134.70, 130.41, 127.98, 115.2, 112.14.

HRMS (EI): m/z calculated for C₇H₃Cl₂N m/z 170.9643, found 170.9645.

Colorless liquid. Isolated yield: 45.2 mg, 55%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.99 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 138.00, 135.90 (q, J = 34.0 Hz), 134.74, 127.30 (q, J = 3.8 Hz),

124.25 (q, J = 3.6 Hz), 126.54 - 118.38 (q, J = 274.52 Hz), 117.13, 114.83.

¹⁹F NMR (377 MHz, CDCl₃, ppm) δ : -63.61.

HRMS (EI): m/z calculated for C₈H₃ClF₃N m/z 204.9906, found 204.9900.

Crystal solid. Isolated yield: 67.8 mg, 80%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.52 (d, J = 9.0 Hz, 1H), 7.13 (d, J = 3.0 Hz, 1H), 6.99 (dd, J = 9.0,

3.0 Hz, 1H), 3.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 158.82, 134.09, 120.92, 119.03, 117.16, 116.34, 115.68, 55.99. HRMS (EI): m/z calculated for C₈H₆BrNO m/z 210.9633, found 210.9630.

methyl 4-cyano-3-fluorobenzoate (II-25)

White solid. Isolated yield: 53.7 mg, 75%. petroleum ether/ EtOAc = 10/1-5/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.93 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.72 (t, J = 7.0 Hz, 1H), 3.97 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 164.48 (d, J = 2.5 Hz), 163.03 (d, J = 260.4 Hz), 136.67 (d, J = 7.6 Hz), 133.82, 125.76 (d, J = 3.8 Hz), 117.58 (d, J = 21.4 Hz), 113.26, 105.69 (d, J = 15.7 Hz), 53.16. HRMS (EI): m/z calculated for C₉H₆FNO₂ m/z 179.0383, found 179.0380.

methyl 4-cyano-2-fluorobenzoate (II-26)

White solid. Isolated yield: 55.9 mg, 78%. petroleum ether/ EtOAc =10/1-5/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.04 (t, J = 7.4 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 9.7 Hz, 1H), 3.96 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 163.44 (d, J = 3.8 Hz), 161.26 (d, J = 263.8 Hz), 133.24 (d, J = 1.4 Hz), 127.82 (d, J = 4.5 Hz), 123.20 (d, J = 10.5 Hz), 121.00 (d, J = 26.1 Hz), 117.69 (d, J = 9.7 Hz), 116.70 (d, J = 2.5 Hz), 53.03.

HRMS (EI): m/z calculated for C₉H₆FNO₂ m/z 179.0383, found 179.0380.

methyl 3-chloro-4-cyanobenzoate (II-27)

White solid. Isolated yield: 47.7 mg, 61%. petroleum ether/ EtOAc =10/1-5/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.16 (s, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 3.96 (s, 3H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 164.51, 137.36, 135.34, 133.18, 130.97, 128.05, 117.28, 115.36, 53.14.

HRMS (EI): m/z calculated for C₉H₆ClNO₂ m/z 195.0087, found 195.0085.

Pale yellow solid. Isolated yield: 34.6 mg, 83%. petroleum ether/ EtOAc=2/1-1/1.

H NMR (400 MHz, CDCl₃, ppm) δ : 8.83 (s, 1H), 8.76 (d, J = 4.7 Hz, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.47 – 7.33 (m, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 152.95, 152.39, 139.21, 123.60, 116.46, 110.04.

HRMS (EI): m/z calculated for $C_6H_4N_2$ m/z 104.0374, found 104.0373.

Colorless liquid. Isolated yield: 49.2 mg, 79%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 8.25 (d, J = 8.3 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.93 (dd, J = 7.6, 4.5 Hz, 2H), 7.71 (t, J = 7.6 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ : 133.41, 133.10, 132.77, 132.54, 128.79, 128.75, 127.70, 125.33, 125.07, 117.94, 110.40.

HRMS (EI): m/z calculated for C₁₁H₇N m/z 153.0578, found 153.0580.

White soild. Isolated yield: 36.8 mg, 60%. petroleum ether/ CH2Cl2=5/1-2/1.

1H NMR (400 MHz, CDCl3, ppm) δ : 8.22 (s, 1H), 7.90 (t, J = 8.5 Hz, 3H), 7.62 (m, 3H).

13C NMR (101 MHz, CDCl3, ppm) δ: 134.82, 134.24, 132.46, 129.31, 129.14, 128.53, 128.18, 127.77, 126.48, 119.28, 109.64.

HRMS (EI): m/z calculated for C₁₁H₇N m/z 153.0578, found 153.0580. White soild. Isolated yield:

White soild. Isolated yield: 67.3 mg, 88%. petroleum ether/ CH₂Cl₂=5/1-2/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.81 (d, J = 7.8 Hz, 2H), 7.78 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 6.8 Hz, 1H), 7.42 (m, 2H), 3.91 (s, 2H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 146.32, 144.02, 143.76, 140.03, 131.25, 128.69, 127.41, 125.40, 121.05, 120.45, 119.66, 109.89, 36.87.

HRMS (EI): m/z calculated for C₁₄H₉N m/z 191.0735, found 191.0736.

Colorless volatile liquid. Isolated yield: 17.1 mg, 33%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.41 – 7.31 (m, 5H), 7.28 (d, J = 16.7 Hz, 1H), 5.79 (d, J = 16.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 150.27, 133.33, 131.00, 128.91, 127.21, 118.03, 96.15.

HRMS (EI): m/z calculated for C₉H₇N m/z 129.0578, found 129.0574.

Colorless volatile liquid. Isolated yield: 20.9 mg, 32%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.75 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 12.1 Hz, 1H), 5.48 (d, J = 12.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃, ppm) δ: 147.41, 137.15, 132.14, 130.40, 129.40, 117.18, 95.86.

HRMS (EI): m/z calculated for C₉H₆ClN m/z 163.0189, found 163.0189.

White solid. Isolated yield: 29.1 mg, 35%. petroleum ether/ CH₂Cl₂=5/1-1/1.

¹H NMR (400 MHz, CDCl₃, ppm) δ : 7.67 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.07 (d, J = 12.1 Hz, 1H), 5.49 (d, J = 12.1 Hz, 1H).

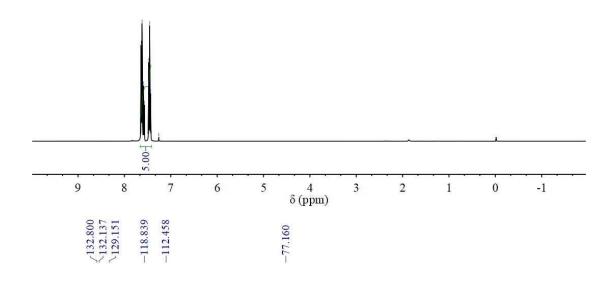
¹³C NMR (101 MHz, CDCl₃, ppm) δ: 147.46, 132.42, 130.51, 125.51, 117.12, 95.99.

HRMS (EI): m/z calculated for C_9H_6BrN m/z 206.9684, found 206.9680.

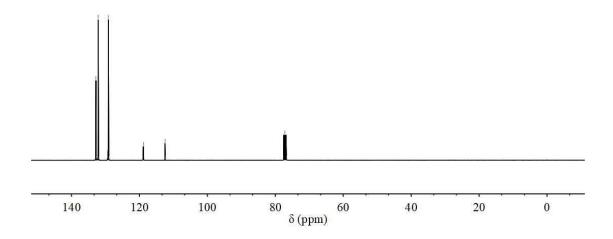
4-((2-fluorobenzyl)oxy)-3-methoxybenzonitrile (II-35)

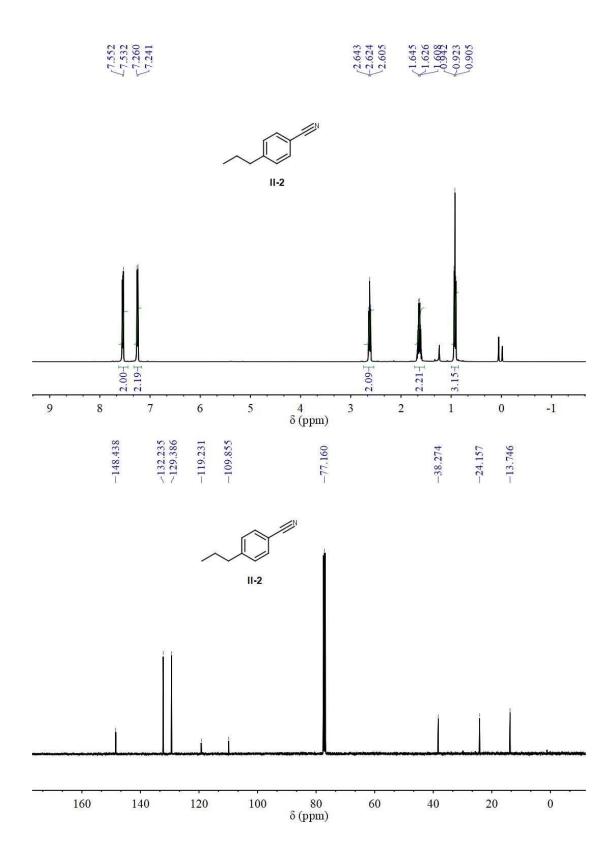
White solid. Isolated yield: 84.3 mg, 82%. petroleum ether/ EtOAc=10/1-5/1.

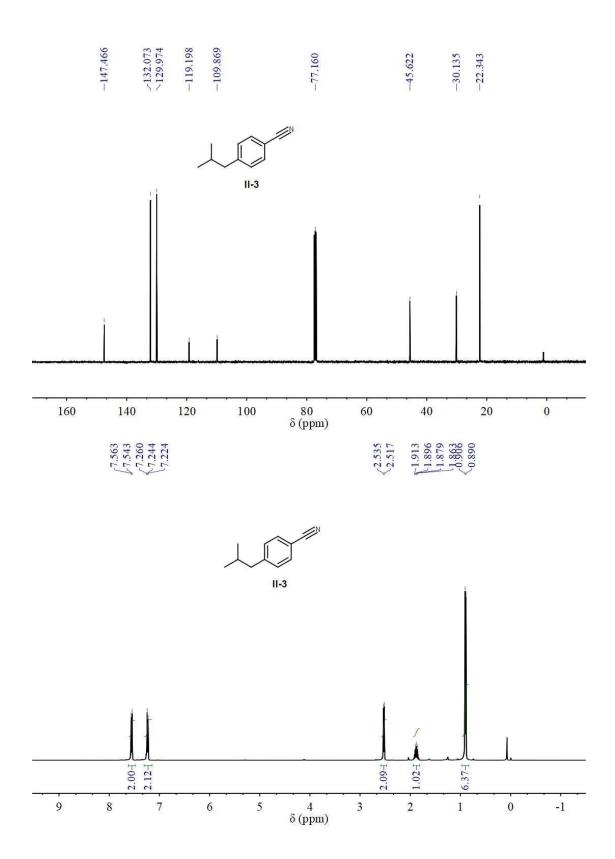
H NMR (400 MHz, CDCl₃, ppm) δ : 7.41 (t, J = 7.3 Hz, 1H), 7.29 – 6.97 (m, 5H), 6.88 (d, J = 8.3 Hz, 1H), 5.18 (s, 2H), 3.82 (s, 3H).

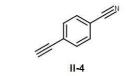

¹³C NMR (101 MHz, CDCl3, ppm) δ : 160.50 (d, J = 247.1 Hz), 151.91, 149.93, 130.24 (d, J = 8.2 Hz), 129.71 (d, J = 3.7 Hz), 126.40, 124.57 (d, J = 3.6 Hz), 123.16 (d, J = 14.1 Hz), 119.22, 115.59 (d, J = 21.1 Hz), 114.74, 113.50, 104.71, 64.75 (d, J = 4.5 Hz), 56.35.

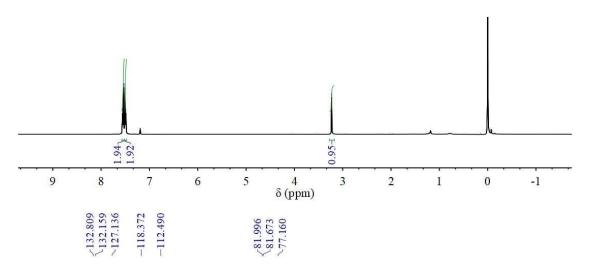
HRMS (EI): m/z calculated for $C_{15}H_{12}FNO_2$ m/z 257.0852, found 257.0848.

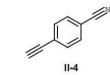

6. NMR Spectra

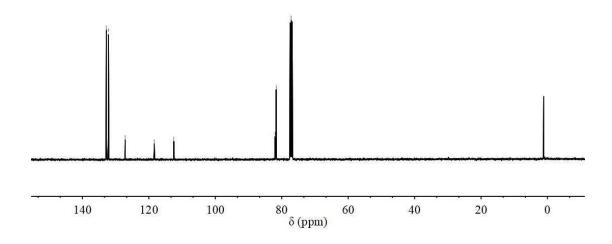

7.639 7.590 7.572 7.475 7.475 7.436

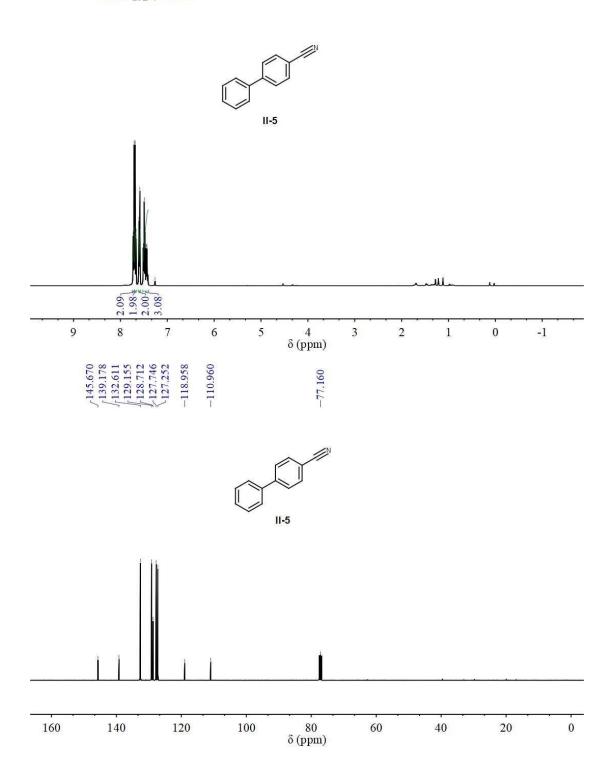


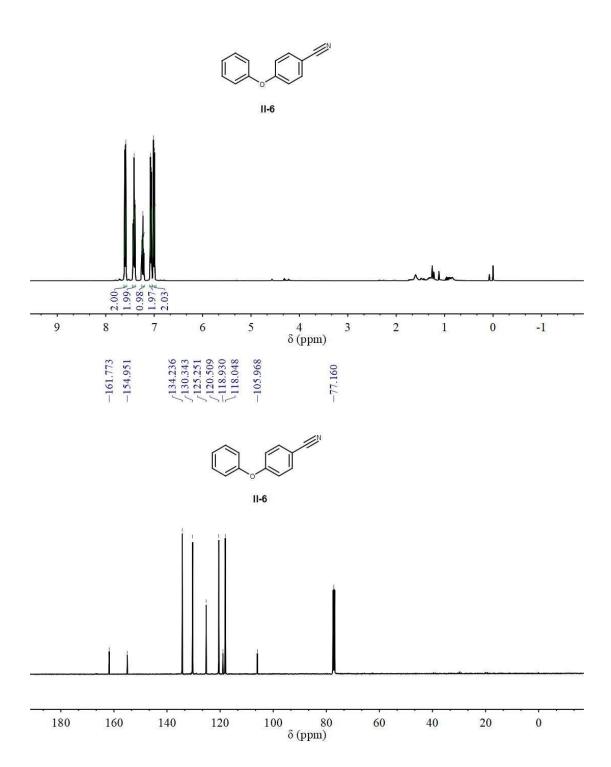


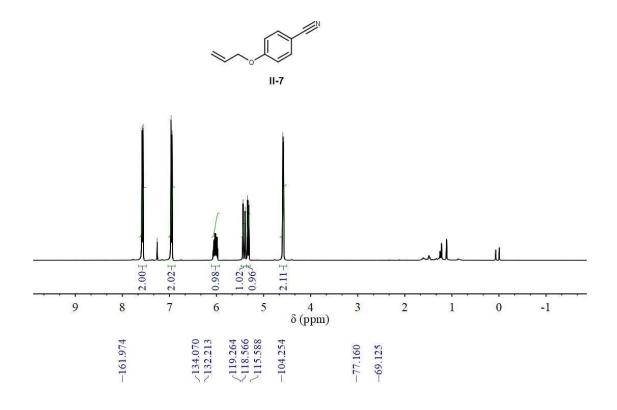


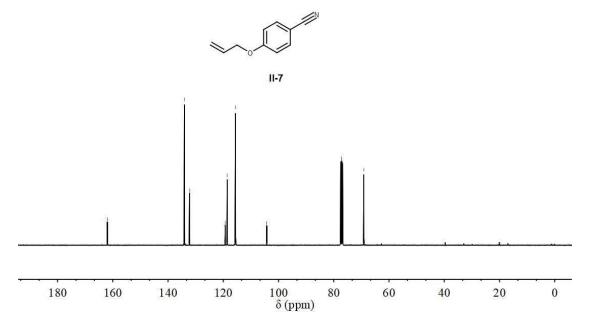


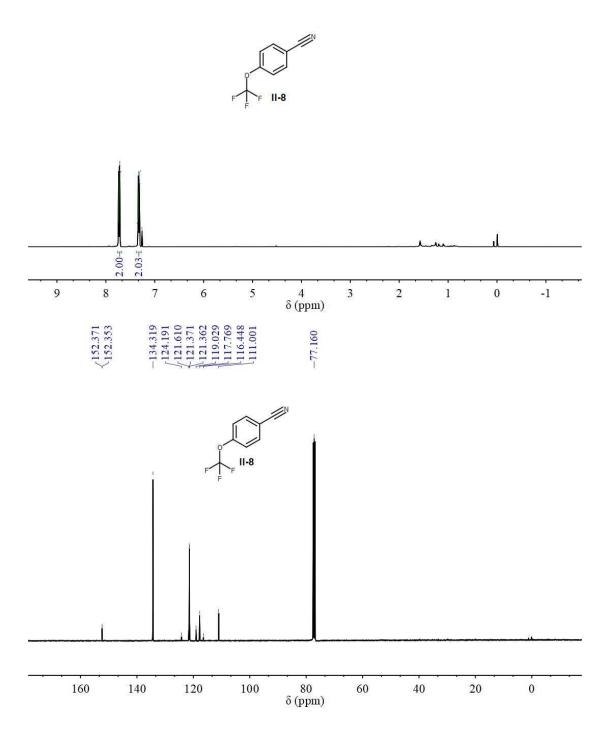


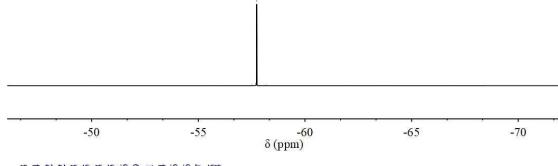


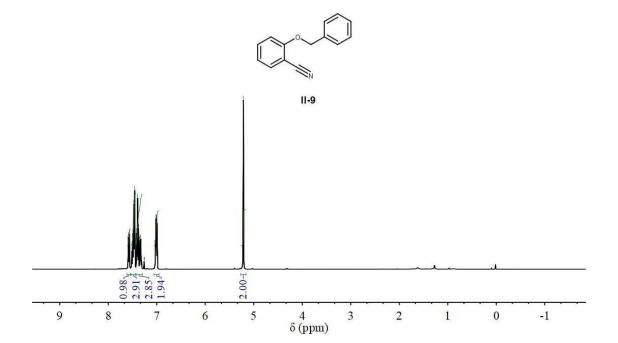


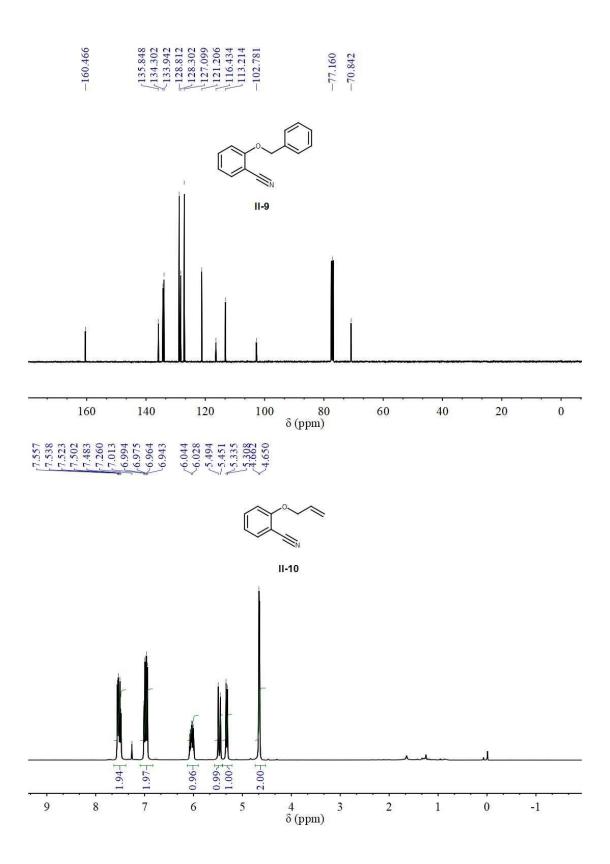


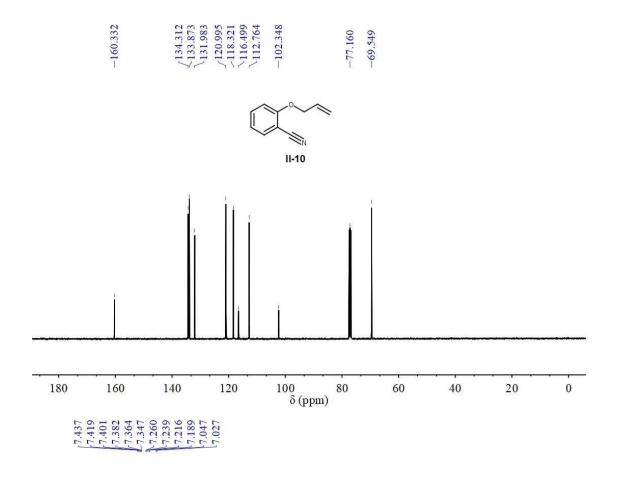


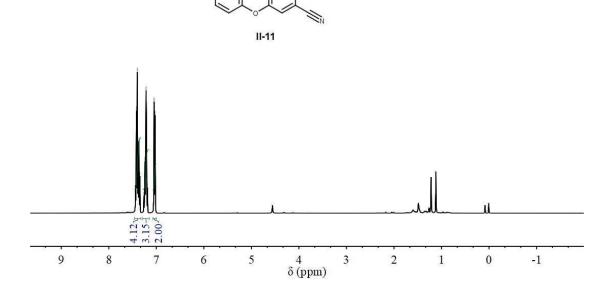


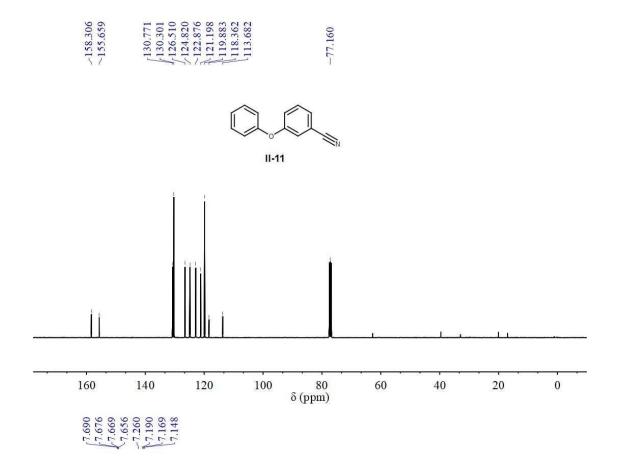


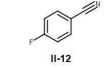


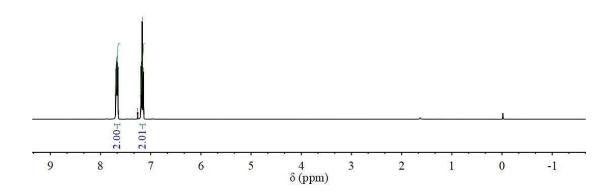


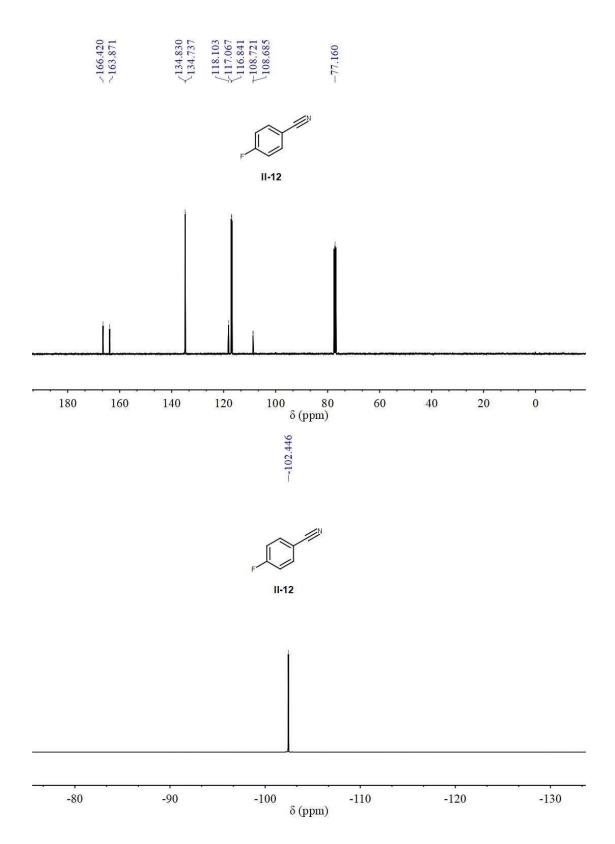


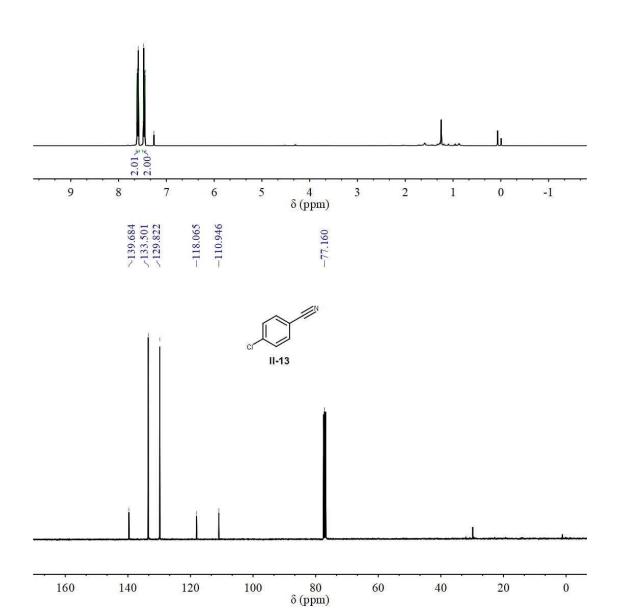


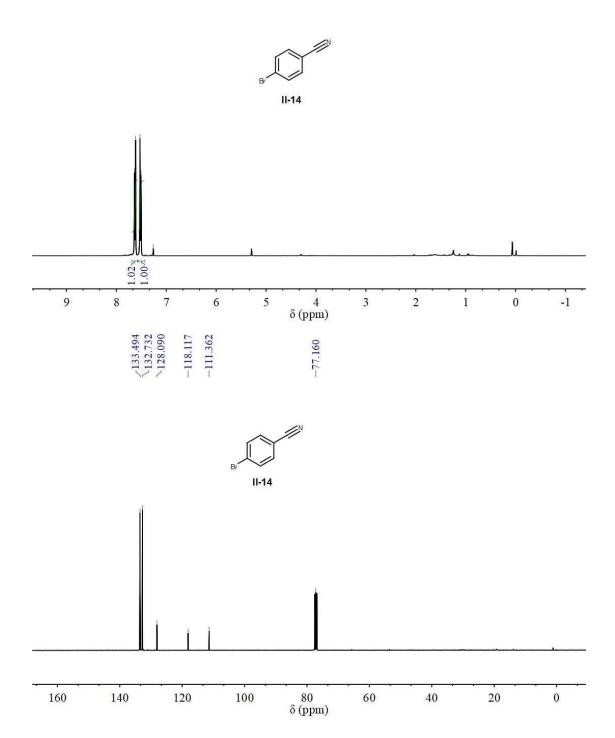

7.583 7.564 7.512 7.443 7.4455 7.4455 7.4455 7.316 7.314 7.314 7.314 7.314 7.316 7.316 7.317 7.3

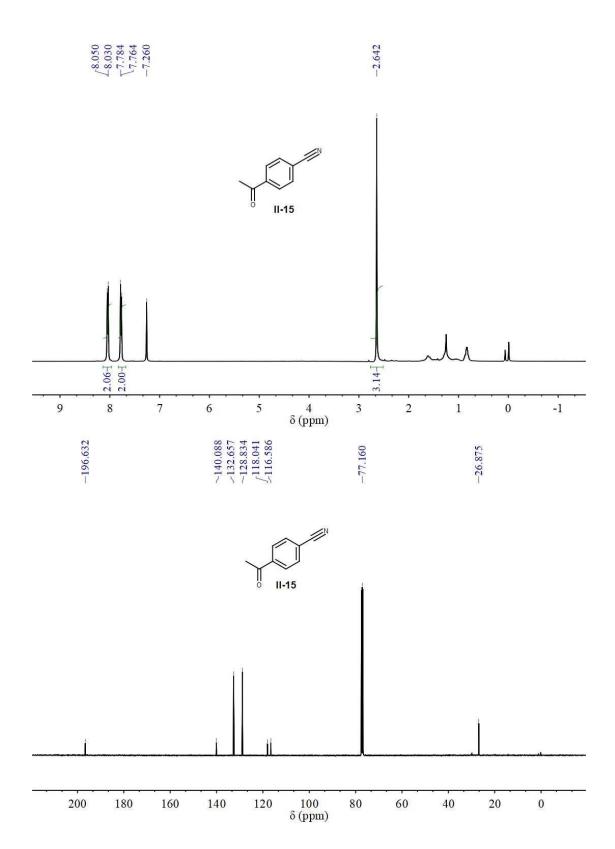


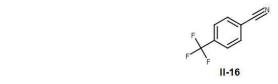


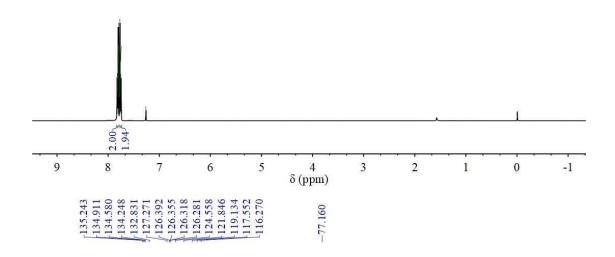


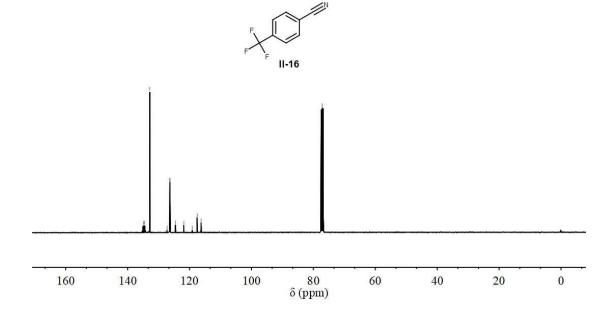


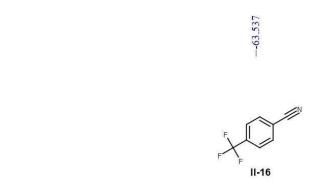


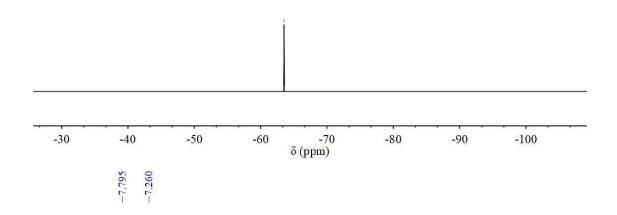


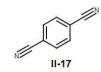


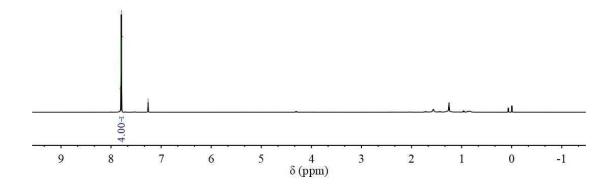


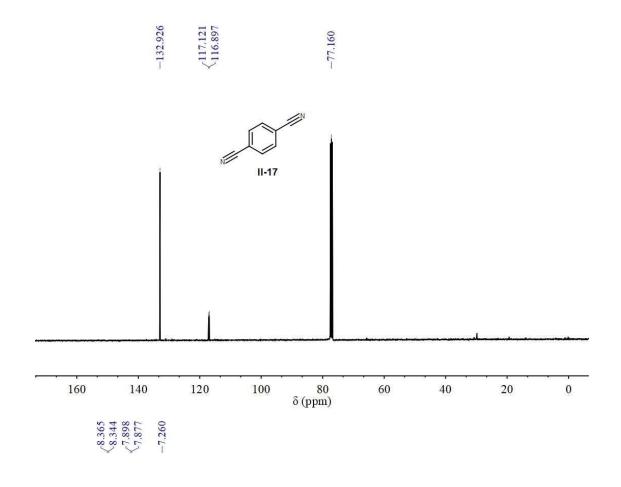


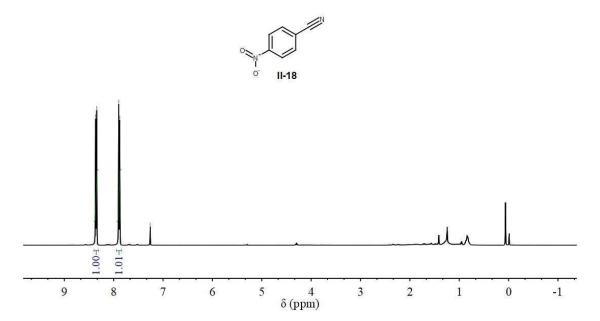


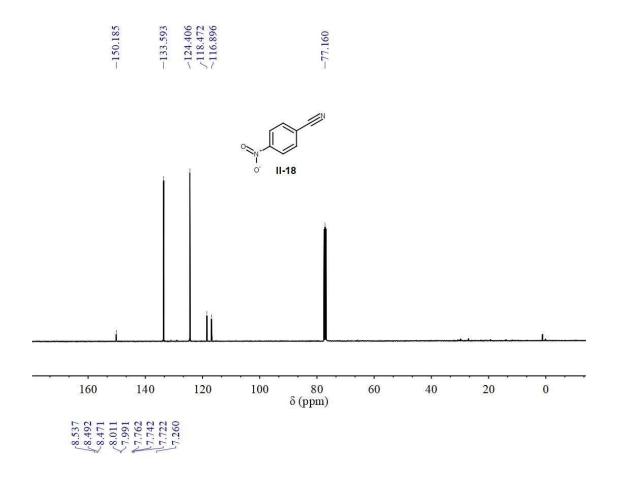


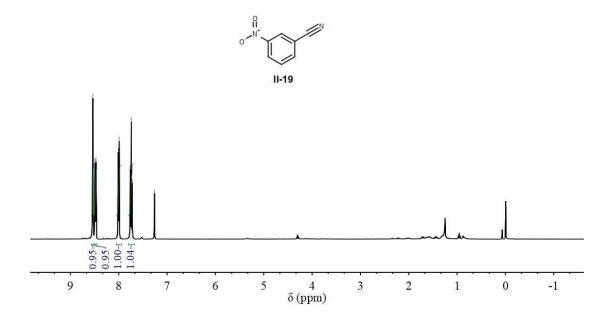


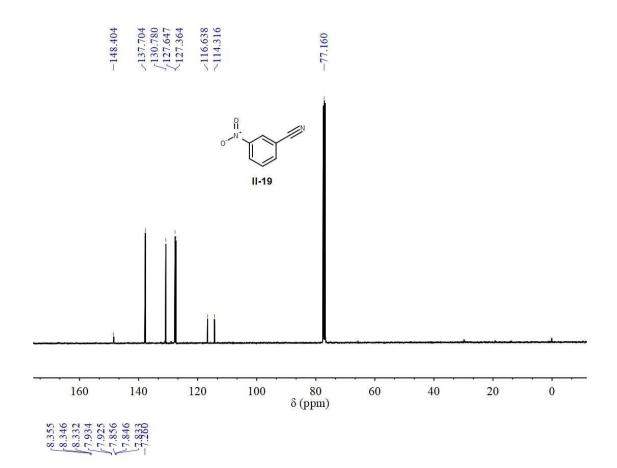


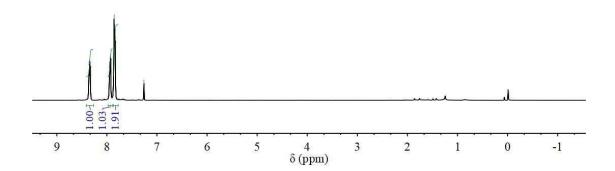


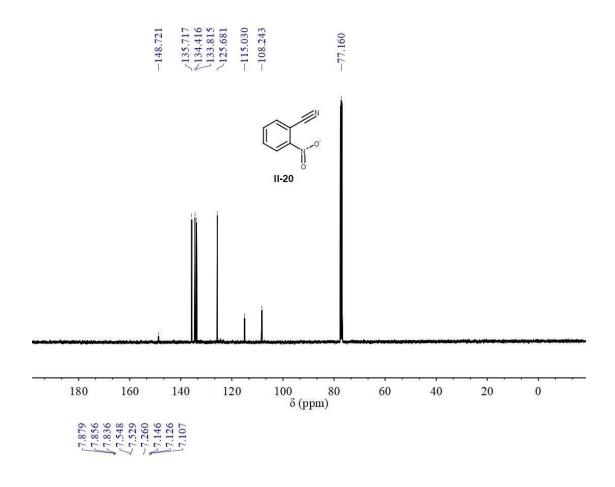


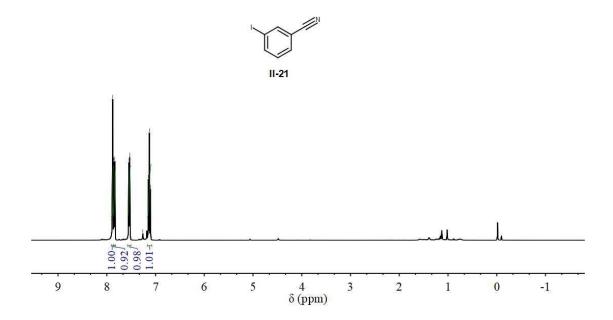


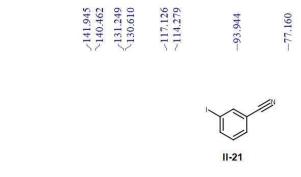


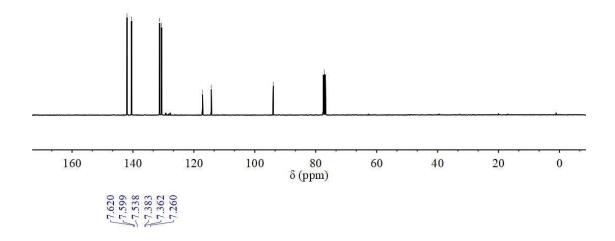


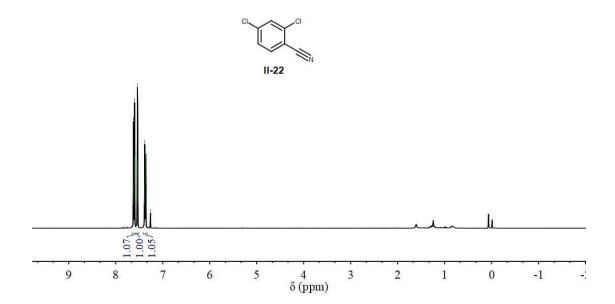


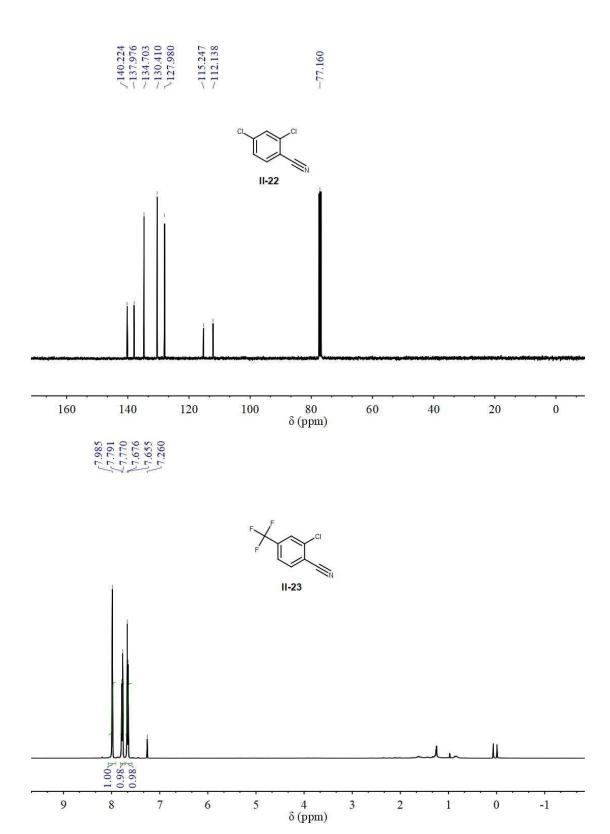


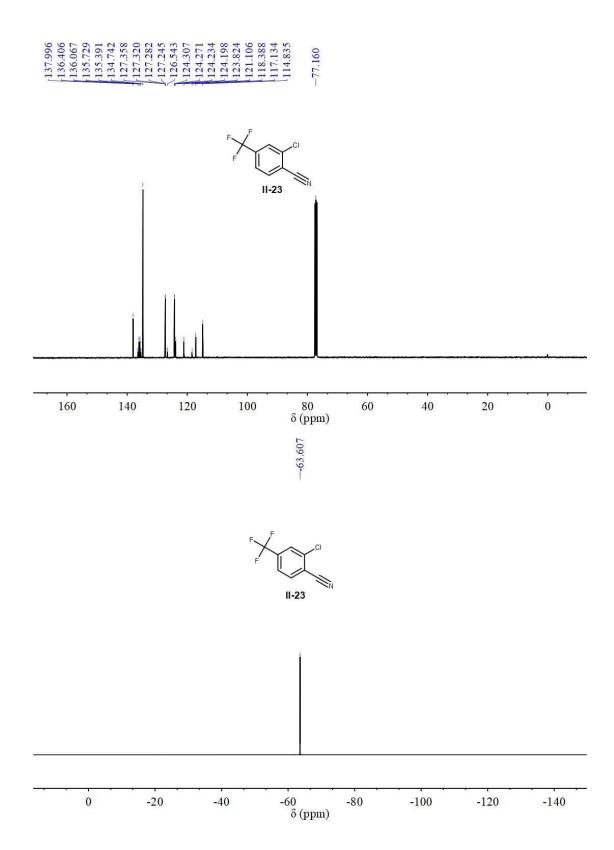


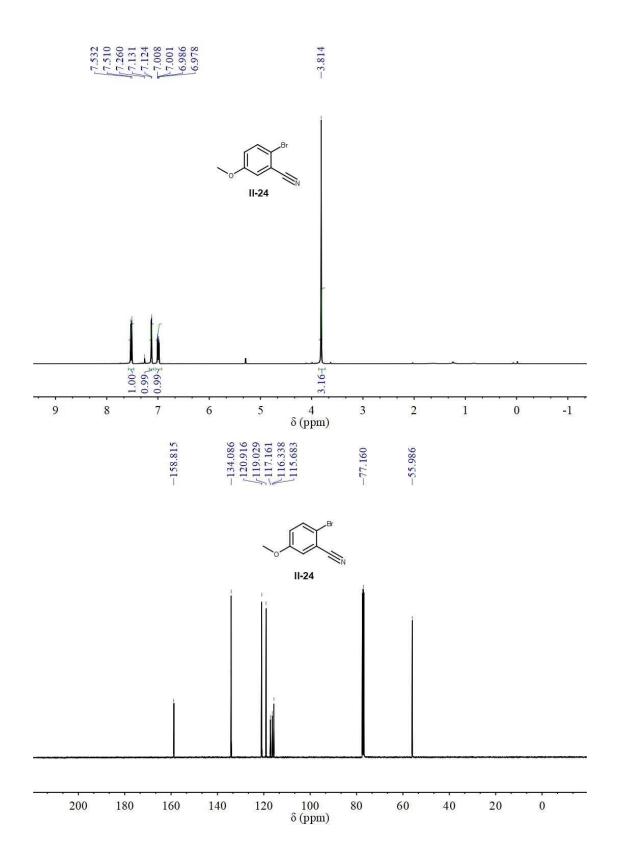


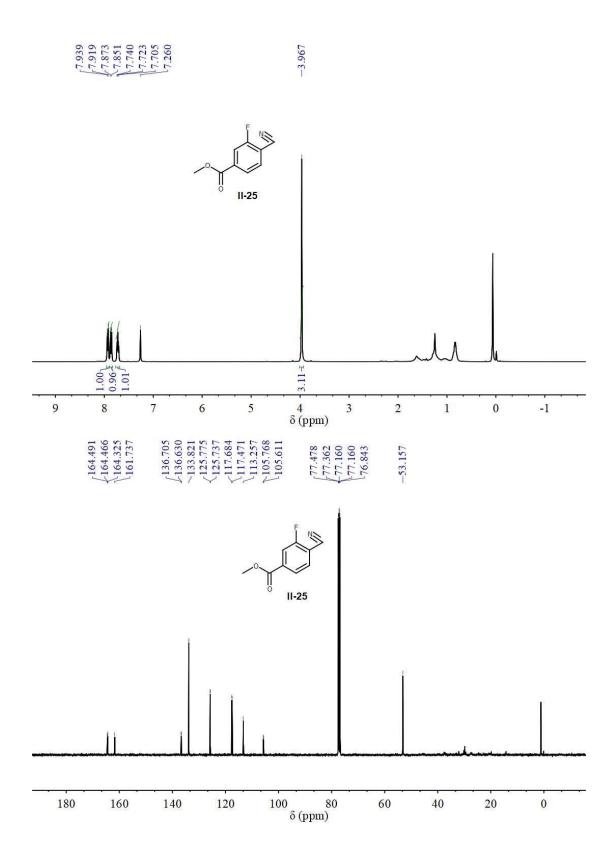


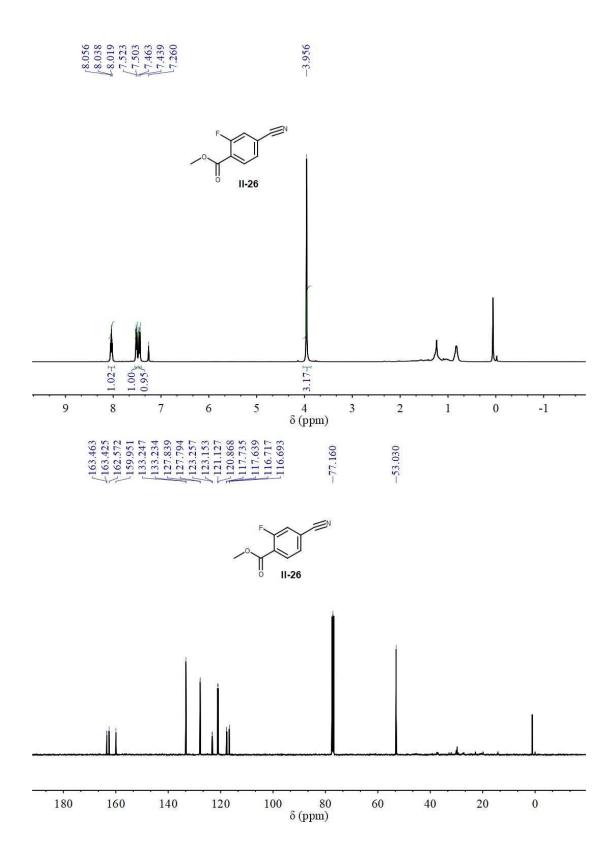


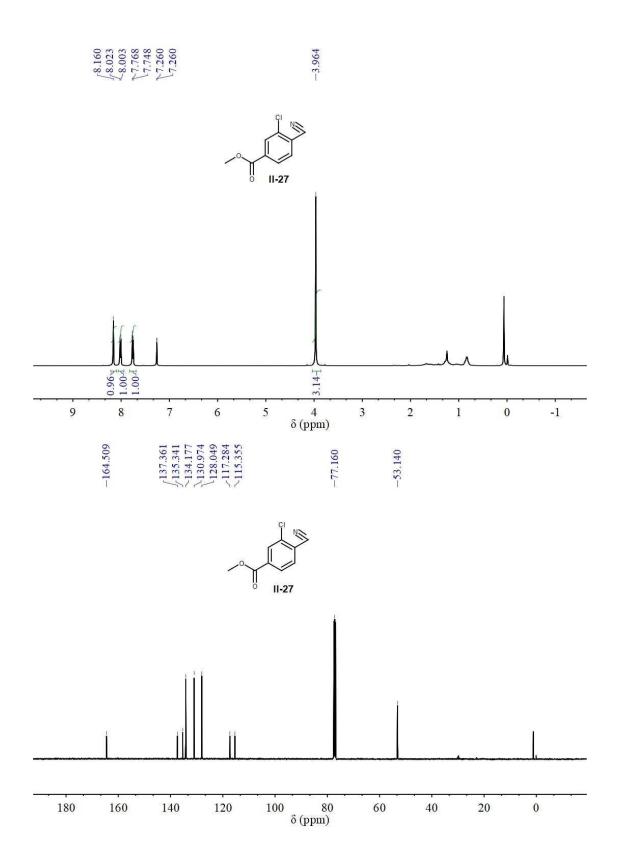


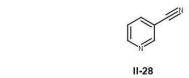


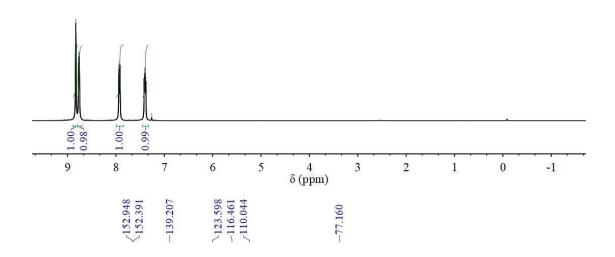


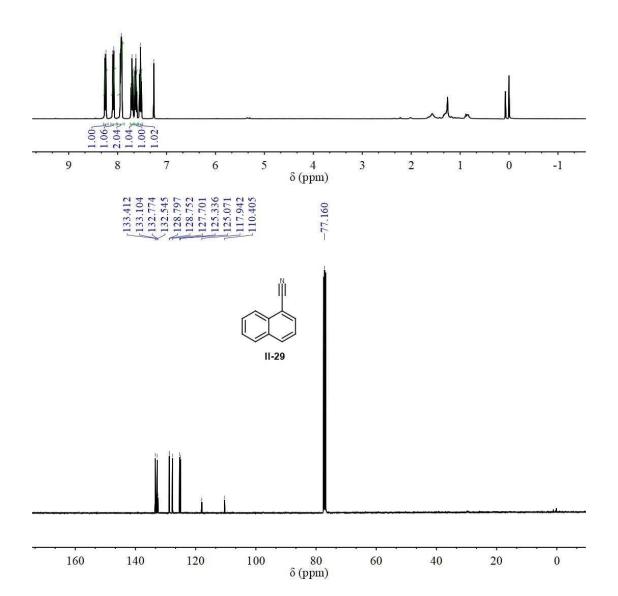


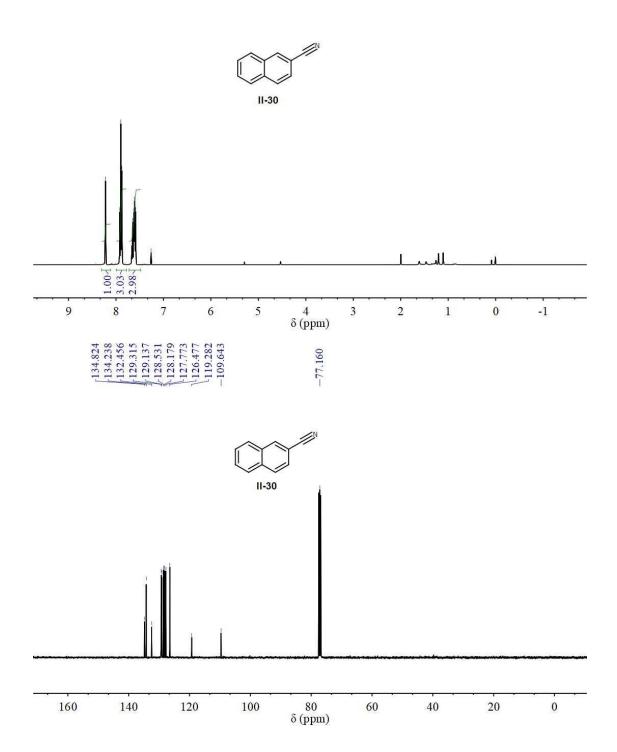


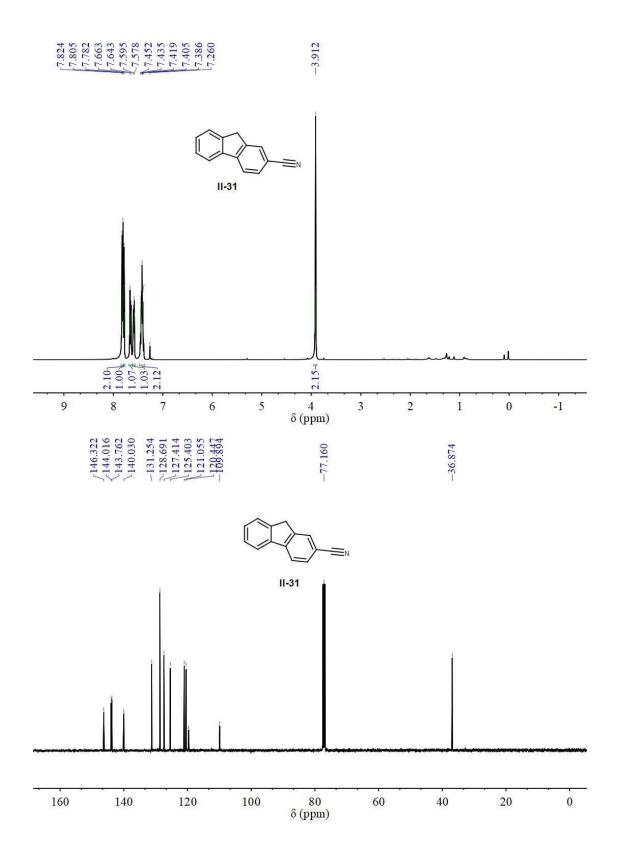


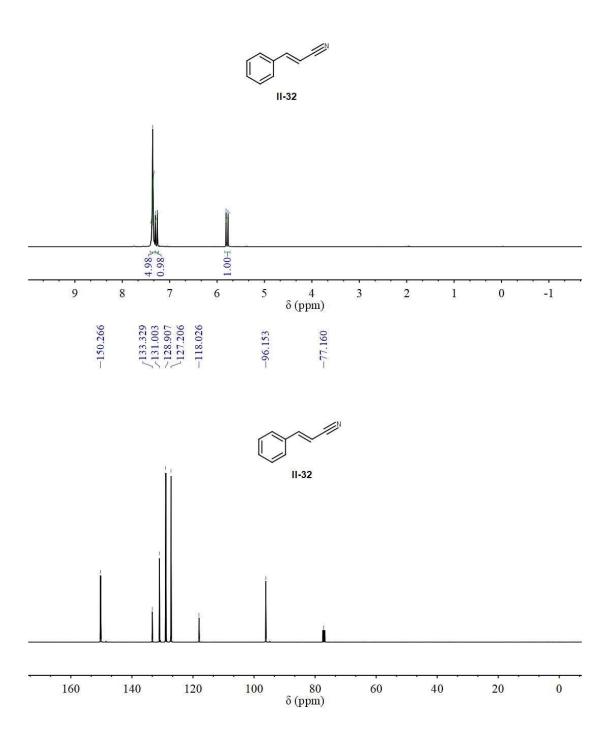


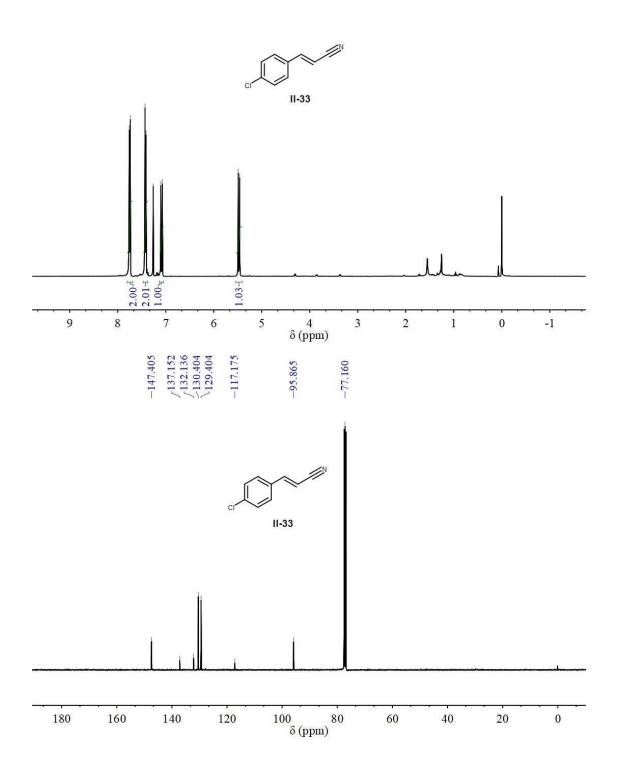


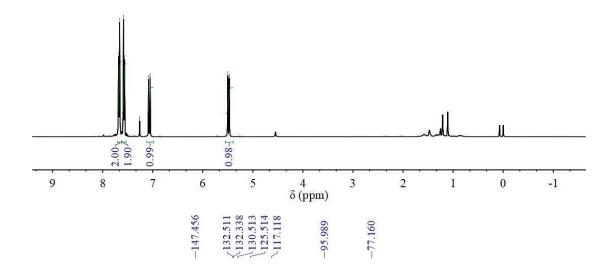


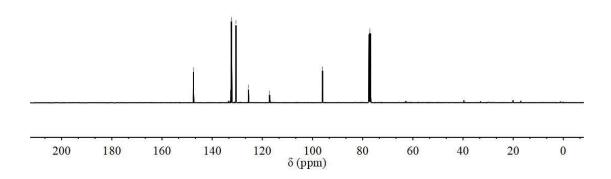


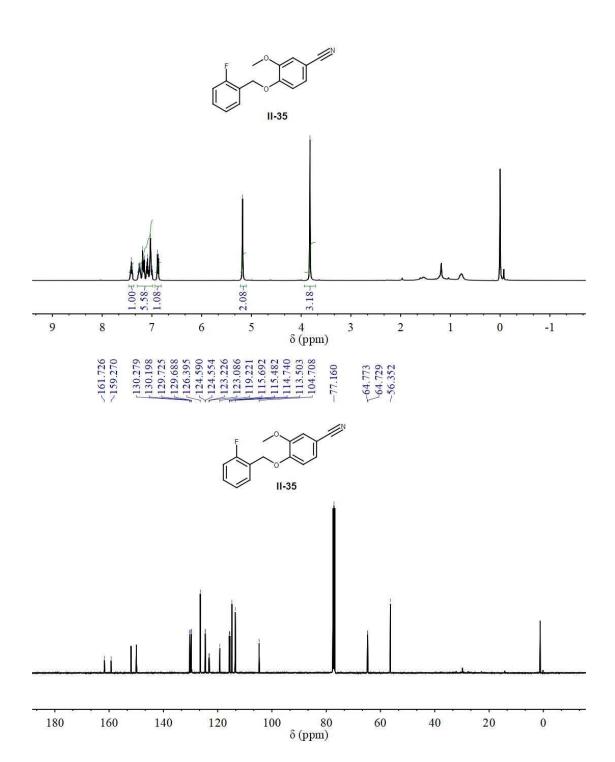







7.378 7.347 7.302 7.260 7.260 7.260




7.760 7.739 7.431 7.410 7.260 7.101 7.070 5.491

