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Materials and Methods 

Synthesis and Structural Characterization. Unless noted, all commercial reagents were purchased and used 

as received without further purification. 
1
H NMR spectra were recorded at 400 or 500 MHz, and 

13
C NMR spectra 

were recorded at 100 or 125 MHz NMR Bruker instruments in CDCl3 or DMSO-d6 solutions and chemical shifts 

were referenced to tetramethylsilane (TMS) or residual protiated solvent. If CDCl3 was used as solvent,
 1

H NMR 

spectra were recorded with TMS (δ = 0.00 ppm) or residual CHCl3 (δ = 7.26 ppm) as internal references; 
13

C NMR 

spectra were recorded with TMS (δ = 0.00 ppm) or CDCl3 (δ = 77.00 ppm) as internal references. If DMSO-d6 was 

used as solvent,
 1
H NMR spectra were recorded with TMS (δ = 0.00 ppm) or residual DMSO (δ = 2.50 ppm) as 

internal references; 
13

C NMR spectra were recorded with TMS (δ = 0.00 ppm) and DMSO-d6 (δ = 39.52 ppm) as 

internal references. The following abbreviations (or combinations thereof) were used to explain 
1
H NMR 

ultiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, br = broad. All of the new 

compounds were analyzed for HRMS on a Waters mass spectrometer using electrospray ionization in positive ion 

mode of ESI-Q-TOF. 
 

    X-ray Crystallography. X-ray diffraction data were collected at 170 K on a Bruker D8 Venture 

diffractometer using graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å) from a rotating anode generator. 

Quantum Chemical Calculations. The theoretical calculations were performed using Gaussian 09 package. 

The molecular geometries of ground states (S0) were optimized with the density functional theory (DFT) method at 

the B3LYP level. The DFT calculations were performed using a B3LYP function with a basis set of 6-31G(d) for C, 

H, O and N atoms; the LANL2DZ basis set with ECP was used for Pt atoms.
  

Electrochemistry. Cyclic voltammetry and different pulsed voltammetry were performed using a CH1760E 

electrochemical analyzeraccording previous report. 0.1 M tetra-n-butylammonium hexafluorophosphate was used 

as the supporting electrolyte, anhydrous N, N-dimethylformamide, was used as the solvents for the Eox and Ered 

measurements, and the solutions were bubbled with nitrogen for 15 min prior to the test. Silver wire, platinum wire 

and glassy carbon were used as pseudoreference electrode, counter electrode, and working electrode respectively. 

Scan rate was 300 mV/s. The redox potentials are based on the values measured from different pulsed voltammetry 

and are reported relative to an internal reference ferrocenium/ferrocene (Cp2Fe/Cp2Fe
+
). The reversibility of 

reduction or oxidation was determined using CV. As defined, if the magnitudes of the peak anodic and the peak 

cathodic current have an equal magnitude as scan speeds of 100 mV/s or slower, then the process is considered 

reversible; if the magnitudes of the peak anodic and the peak cathodic currents are not equal, but the return sweeps 

are nonzero, the process is considered quasi-reversible; otherwise, the process is considered irreversible. 

Photophysical Measurements. The absorption spectra were measured on a Hitachi U-3900 UV−VS 
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Spectrometer. Steady state emission experiments were performed on HITACHI F-7000 spectrometer. Low 

temperature (77 K) emission spectra and lifetimes were measured in 2-MeTHF cooled with liquid nitrogen. 

Lifetime measurements and quantum efficiency were measured using an Edinburgh FS5 Spectrofluorometer 

equipped with an integrating sphere. 

OLED Fabrication and Characterization. OLEDs were fabricated and tested in LN-FS1122 Evaporation 

System (Shenyang Yarunfeng Technology Co., Ltd.). All devices were fabricated by vacuum thermal evaporation, 

and were tested outside glove box after encapsulation. Prior to deposition, the prepatterned indium-tin-oxide (ITO) 

coated glass substrates were cleaned by subsequent sonication in deionized water, acetone, and isopropanol. The 

metal layer and organic layers were fabricated by vacuum thermal evaporation on the cleaned ITO glass substrate 

under vacuum (< 4 × 10
–4

 Pa) with 4 Å/s deposition rate for aluminum cathode and 2 Å/s for organic layers. 

OLEDs were fabricated using a device structure of indium tin oxide 

(ITO)/2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HATCN) (20 

nm)/1,1'-bis[4-(di-p-tolylamino)phenyl]cyclohexane (TAPC, 60 

nm)/9-(3-(triphenylsilyl)phenyl)-9H-3,9′-bicarbazole (SiCzCz, 5 nm)/8 wt.% emitter:65 wt.% SiCzCz:27 wt.% 

9,9′-(6-(3-(triphenylsilyl)phenyl)-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) (SiTrzCz2) (35 

nm)/2-phenyl-4,6-bis(3-(triphenylsilyl)phenyl)-1,3,5-triazine (mSiTrz, 5 nm)/mSiTrz:lithium quinolin-8-olate (Liq) 

(50:50, 31 nm)/LiF (1.5 nm)/Al. The device areas were 9.00 mm
2
 (3.0 mm × 3.0 mm). The current 

density-voltage-luminance characteristics of OLEDs were measured using a Keithey 2400 Source meter and a 

Keithey 2000 Source multimeter equipped with a calibrated silicon photodiode following standard procedures 

[Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. 

Adv. Mater. 15, 1043–1048 (2003)]. The electroluminescence (EL) spectra were recorded with a multichannel 

spectrometer (PMA12, Hamamatsu Photonics).
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Synthesis and Characterization of Tetradentate Pt(II) Complexes 

Synthesis of PtODP: 

 

Synthesis of 5-(4-(tert-butyl)pyridin-2-yl)-5H-benzofuro[3,2-c]carbazol-3-ol (ODP2): 

3-Methoxy-5H-benzofuro[3,2-c]carbazole ODP1 (34.86 g, 121.33 mmol, 1.0 equiv), 

4-(tert-butyl)-2-chloropyridine (24.70 g, 145.59 mmol, 1.2 equiv), t-BuONa (23.32 g, 242.66 mmol, 2.0 equiv), 

Pd2(dba)3 (4.44 g, 4.85 mmol, 4 mol%) and dicyclohexyl(2',6'-dimethoxybiphenyl-2-yl)phosphane (SPhos, 3.98 g, 

9.71 mmol, 8 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The 

flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 

toluene (300 mL) was added into the flask under nitrogen atmosphere at room temperature. Then the flask was 

placed in an oil bath and the reaction mixture was stirred at 110 ℃ for 24 hours, the reaction was monitored by 

TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, filtered and 

washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified 

through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30:1−20:1) to obtain the 

desired product as a brown solid 42.35 g in 83% yield.
 1
H NMR (500 MHz, CDCl3): δ (ppm) 1.43 (s, 9H), 3.90 (s, 

3H), 7.06 (dd, J = 8.5, 2.0 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.36 (dd, J = 5.5, 2.0 Hz, 1H), 7.38 (td, J = 7.5, 1.5 Hz, 

1H), 7.43–7.46 (m, 1H), 7.69 (d, J = 1.0 Hz, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 8.5 Hz, 1H), 7.98 –7.99(m, 

1H), 8.42 (d, J = 8.5 Hz, 1H), 8.67 (dd, J = 5.5, 0.5 Hz, 1H). 

Synthesis of 5-(4-(tert-butyl)pyridin-2-yl)-5H-benzofuro[3,2-c]carbazol-3-ol (ODP3): Compound ODP2 
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(41.00 g, 97.50 mmol, 1.0 equiv) and PyHCl (112.67 g, 975.00 mmol, 10.0 equiv) were added sequentially to a dry 

three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this 

evacuation and backfill procedure was repeated twice. Then DMI (10 mL) was added into the flask under nitrogen 

atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred and 

heated at 180 ℃ for 19 hours, the reaction was monitored by TLC until the reaction was completed. The reaction 

mixture was cooled down to room temperature, diluted with ethyl acetate. The mixture was washed with water, the 

organic layer was separated, and dried over Na2SO4, filtered. The filtrate was concentrated under reduced pressure 

and beating with ethyl acetate and petroleum ether, filtered to obtain the desired product as a white solid 35.67 g in 

90% yield. 
1
H NMR (500 MHz, DMSO-d6): δ (ppm) 1.40 (s, 9H), 6.94 (dd, J = 8.5, 2.0 Hz, 1H), 7.17 (d, J = 2.0 

Hz, 1H), 7.43 (td, J = 7.5, 0.5 Hz, 1H), 7.50 (td, J = 8.5, 1.5 Hz, 1H), 7.56 (dd, J = 5.0, 1.5 Hz, 1H), 7.70 (d, J = 9.0 

Hz, 1H), 7.74 (d, J = 1.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 8.15 (dd, J = 7.5, 0.5 Hz, 1H), 

8.20 (d, J = 8.5 Hz, 1H), 8.67 (d, J = 5.0 Hz, 1H), 9.81 (s, 1H). 
13

C NMR (125 MHz, DMSO): δ (ppm) 30.13, 34.94, 

97.07, 107.00, 108.72, 111.22, 111.63, 113.07, 116.51 (2C), 116.81, 119.62, 120.24, 122.72, 123.24, 124.44, 125.85, 

139.55, 140.64, 149.38, 149.48, 150.85, 155.55, 157.13, 163.16. 

Synthesis of 5-(4-(tert-butyl)pyridin-2-yl)-3-(3-chlorophenoxy)-5H-benzofuro[3,2-c]carbazole (ODP4): 

Compound ODP3 (16.74 g, 41.18 mmol, 1.0 equiv), 1-bromo-3-chlorobenzene (9.46 g, 49.42 mmol, 1.2 equiv), 

CuI (1.57 g, 8.24 mmol, 30 mol%), 2-picolinic acid (2.03 g, 16.47 mmol, 60 mol%) , and K3PO4 (17.48 g, 82.36 

mmol, 2.0 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask 

was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 

DMSO (200 mL) was added into the flask under nitrogen atmosphere at room temperature. Then the flask was 

placed in an oil bath and the reaction mixture was stirred at 100 ℃ for 12 hours, the reaction was monitored by 

TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, and diluted 

with ethyl acetate. The mixture was washed with water, the organic layer was separated, and dried over Na2SO4, 

filtered. The filtrate was concentrated under reduced pressure and the residue was purified through column 

chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30:1) to obtain the desired product as a white 

solid 18.10 g in 85% yield. 
1
H NMR (500 MHz, DMSO): δ (ppm) 1.32 (s, 9H), 7.10 (ddd, J = 8.5, 2.5, 1.0 Hz, 1H), 

7.17–7.27 (m, 3H), 7.33 (d, J = 2.0 Hz, 1H), 7.43 (t, J = 8.5 Hz, 1H), 7.46 (td, J = 7.5, 1.0 Hz, 1H), 7.50–7.56 (m, 

2H), 7.74 (d, J = 2.0 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 8.186 (d, J = 8.5 Hz, 1H), 8.193 

(dd, J = 7.5, 2.5 Hz, 1H), 8.45 (d, J = 8.5 Hz, 1H), 8.64 (d, J = 5.5 Hz, 1H). 

Synthesis of N
1
-(2,6-diisopropylcyclohexa-1,3-dien-1-yl)benzene-1,2-diamine (5): Compound 
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N-(2,6-diisopropylcyclohexa-1,3-dien-1-yl)-2-nitroaniline (6.0 g, 20.11 mmol, 1.0 equiv) and SnCl22H2O (18.15 g, 

80.43 mmol, 4.0 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The 

flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 

EtOH (60 mL) and ethyl acetate (60 mL) were added into the flask under nitrogen atmosphere at room temperature. 

Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 78 ℃ for 12 hours, the 

reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room 

temperature, and quenched with NaHCO3. The mixture was extracted with ethyl acetate, the organic layer was 

separated, and dried over Na2SO4, filtered. The filtrate was concentrated under reduced pressure and the residue 

was purified through column chromatography on silica gel (eluent: petroleum ether/ dichloromethane = 15:1–10:1) 

to obtain the desired product as a purple solid 4.70 g in 87% yield. 
1
H NMR (500 MHz, DMSO-d6): δ (ppm) 1.01 (s, 

6H), 1.12 (s, 6H), 3.05–3.10 (m, 2H), 4.79 (s, 2H), 5.77 (dd, J = 7.5, 1.0 Hz, 1H), 5.95 (s, 1H), 6.29 (td, J = 7.5, 1.5 

Hz, 1H), 6.41 (td, J = 7.5, 1.5 Hz, 1H), 6.59 (dd, J = 7.5, 1.5 Hz, 1H), 7.18 (t, J = 6.0 Hz, 1H), 7.20 (s, 1H), 7.23 

(dd, J = 9.0, 5.5 Hz, 1H).  

Syntesis of 

1-(3-((5-(4-(tert-butyl)pyridin-2-yl)-5H-benzofuro[3,2-c]carbazol-3-yl)oxy)phenyl)-3-(2,6-diisopropylphenyl)-1H-

benzo[d]imidazol-3-ium(LODP): Compound ODP4 (8.00 g, 15.47 mmol, 1.0 equiv), 5 (4.98 g, 18.57 mmol, 1.2 

equiv), Pd2(dba)3 (425 mg, 0.46 mmol, 3 mol%), 2-(Di-tert-butylphosphino)biphenyl (JohnPhos, 277 mg, 0.93 

mmol, 6 mol%), and t-BuONa (2.97 g, 30.95 mmol, 2.0 equiv) were added sequentially to a dry three-necked flask 

equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and 

backfill procedure was repeated twice. Then toluene (80 mL) was added and the mixture was heated at 100 ℃ 

under a nitrogen atmosphere for 5 hours. After the reaction was completed, the mixture was cooled to room 

temperature and concentrated under reduced pressure. The residue was purified through column chromatography on 

silica gel (eluent: petroleum ether/ethyl acetate = 30:1) to obtain the desired product diamine as powder solid 9.50 g 

in 82% yield. The intermediate diamine was not stable enough and easily oxidized by air, thereby, directly used for 

the next step. The diamine (7.40 g, 9.88 mmol, 1.0 equiv), and NH4PF6 (3.22 g, 19.76 mmol, 2.0 equiv) were added 

to dry three-necked flask equipped with a magnetic stir bar. Then CH(OEt)3 (30 mL) was added and the mixture 

was heated at 75 ℃ under a nitrogen atmosphere for 3 hours. After the reaction was completed by TLC monitoring, 

the mixture was cooled down to room temperature. Then concentrated under reduced pressure. The residue was 

purified through column chromatography on silica gel (eluent: petroleum ether/dichloromethane = 1:1–

dichloromethane/ethyl acetate = 50:1) to obtain the desired product as powder solid 7.60 g in 85% yield. 
1
H NMR 
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(500 MHz, CDCl3): δ (ppm) 1.02 (d, J = 6.5 Hz, 6H), 1.23 (d, J = 7.0 Hz, 6H), 1.42 (s, 9H), 2.15–2.21 (m, 2H), 

7.30 (d, J = 8.5 Hz, 1H), 7.31 (dd, J = 8.5, 1.5 Hz, 1H), 7.35 (t, J = 2.5 Hz, 1H), 7.37–7.38 (m, 1H), 7.39 (d, J = 1.5 

Hz, 1H), 7.41 (s, 1H), 7.42 (s, 1H), 7.48 (td, J = 7.5, 1.0 Hz, 1H), 7.56 (dd, J = 8.0, 1.0 Hz, 1H), 7.59–7.69 (m, 6H), 

7.72 (d, J = 9.0 Hz, 1H), 7.75 (t, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 8.00 (dd, J = 

7.5, 0.5 Hz, 1H), 8.59 (d, J = 8.5 Hz, 1H), 8.63 (d, J = 5.5 Hz, 1H), 9.64 (s, 1H). 
13

C NMR (125 MHz, CDCl3):
  

δ 

(ppm) 23.98, 24.17, 28.98, 30.52, 35.21, 103.49, 106.27, 109.17, 111.73, 113.34, 113.67, 114.29, 114.33, 116.75, 

117.54, 118.00, 118.90, 119.27, 119.63, 119.88, 120.48, 122.99, 123.97, 124.82, 125.16, 125.68, 126.81, 128.75, 

128.91, 129.10, 130.81, 132.11, 132.53, 132.56, 132.76, 133.04, 133.38, 140.56, 140.88, 146.14, 149.66, 150.79, 

151.26, 154.05, 156.36, 159.99, 163.71. HRMS (ESI): calcd for C52H47N4O2
+ 

[M+H]
+ 

759.3694, found 759.3669. 

Synthesis of platinum(II) (PtODP): Ligand LODP (21.00 g, 23.21 mmol, 1.00 equiv), Pt(COD)Cl2 (9.12 g, 

24.37 mmol, 1.05 equiv), and NaOAc (5.71 g, 69.62 mmol, 3.00 equiv) were added sequentially to a dry 

three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this 

evacuation and backfill procedure was repeated twice. Then Benzonitrile (PhCN, 765 mL) was added and the 

mixture was stirred at 180 ℃ for 72 hours under a nitrogen atmosphere. After the reaction was completed, the 

mixture was cooled down to room temperature and extracted with dichloromethane three times, dried over Na2SO4, 

filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column 

chromatography on silica gel (eluent: petroleum ether/dichloromethane = 4:1–2:1) to obtain the desired product as 

yellow solid 7.95 g in 36% yield. 
1
H NMR (500 MHz, CDCl3): δ (ppm) 0.68–1.09 (br, 6H), 1.04–1.27 (br, 6H), 

1.28 (s, 9H), 2.81–3.40 (br, 2H), 6.10 (dd, J = 6.5, 2.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 7.22 (dd, J = 8.0 , 0.5 Hz, 

1H), 7.26 (d, J = 3.5 Hz, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.36–7.40 (m, 2H), 7.40–7.45 (m, 2H), 7.46–7.49 (m, 1H), 

7.54 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.5 

Hz, 1H), 8.00 (dd, J = 7.0, 0.5 Hz, 1H), 8.05 (d, J = 1.5 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 

8.66 (d, J = 6.5 Hz, 1H). HRMS (ESI): calcd for C52H45N4O2Pt [M+H]
+ 

952.3185, found 952.3185. 
13

C NMR 

spectrum was not available because of the poor solubility of PtODP in solvents. 
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[M+H]+
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Fig. S1. Density functional theory (DFT) calculated frontier orbits of Pt(II) complexes. Frontier orbits and 

energy levels of PtON-TBBI and PtODP. Optimized S0 were calculated using a B3LYP method with a basic set of 

6-31G* for C, H, O, and N atoms and a LANL2DZ basic set for Pt atom. 
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Fig. S2. Time-dependent density functional theory (TD-DFT) calculations of Pt(II) complexes. Natural 

transition orbital (NTO) analyses of PtON-TBBI and PtODP. Optimized S0 were calculated using a B3LYP method 

with a basic set of 6-31G* for C, H, O, and N atoms and a LANL2DZ basic set for Pt atom. 
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Table S1. Calculated excitation energy (E), wavelength (λ), oscillator strength (f), main orbital contribution 

and charge characters of the excited states of PtODP
a
 

a 
Optimized S0 were calculated using a B3LYP method with a basic set of 6-31G* for C, H, O, and N atoms and a 

LANL2DZ basic set for Pt atom. 

 

excited state energy [eV] wavelength [nm] f major contributions 

S1 2.8303 438.06 0.0421 HOMO → LUMO (94%) 

S2 3.0767 402.98 0.0049 

HOMO-2 → LUMO+1 (3%) 

HOMO-1 → LUMO (12%) 

HOMO → LUMO+1 (79%) 

T1 2.5771 481.09 0.0000 

HOMO-1 → LUMO (3%) 

HOMO → LUMO (76%) 

HOMO → LUMO+2 (5%) 

HOMO → LUMO+6 (2%) 

T2 2.8477 435.38 0.0000 

HOMO-2 → LUMO (14%) 

HOMO-1 → LUMO (11%) 

HOMO-1 → LUMO+2 (6%) 

HOMO → LUMO (7%) 

HOMO → LUMO+1 (9%) 

HOMO → LUMO+2 (22%) 

T3 2.9454 420.95 0.0000 

HOMO-1 → LUMO (59%) 

HOMO → LUMO+1 (9%) 

HOMO → LUMO+2 (14%) 

T4 2.9768 416.50 0.0000 

HOMO-2 → LUMO+1 (4%) 

HOMO-1→ LUMO (17%) 

HOMO → LUMO (7%) 

HOMO → LUMO+1 (58%) 

T5 3.0743 403.29 0.0000 

HOMO-2 → LUMO (24%) 

HOMO-2 → LUMO+1 (12%) 

HOMO-2 → LUMO+6 (3%) 

HOMO-1 → LUMO+1 (7%) 

HOMO-1 → LUMO+2 (10%) 

T6 3.2040 386.97 0.0000 

HOMO-4 → LUMO (7%) 

HOMO-4 → LUMO+1 (2%) 

HOMO-4 → LUMO+2 (4%) 

HOMO-2 → LUMO (6%) 

HOMO-2 → LUMO+1 (3%) 

HOMO-1 → LUMO (3%) 

HOMO-1 → LUMO+1 (20%) 

HOMO-1 → LUMO+2 (19%) 

HOMO → LUMO (2%) 

HOMO → LUMO+1 (3%) 

HOMO → LUMO+2 (6%) 

HOMO → LUMO+7 (2%) 

T7 3.2663 379.59 0.0000 

HOMO-4 → LUMO+1 (2%) 

HOMO-4 → LUMO+2 (3%) 

HOMO-1 → LUMO+1 (35%) 

HOMO-1 → LUMO+2 (27%) 

HOMO → LUMO+2 (14%) 
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Table S2. Crystal data and structure refinements of PtODP·CH2Cl2 

Compound PtODP·CH2Cl2 

CCDC number 2416736 

Empirical formula C53H46Cl2N4O2Pt 

Formula weight 1036.93 

Temperature/K 170.00 

Crystal system monoclinic 

Space group P21/c 

a/Å 12.8455(4) 

b/Å 14.3225(5) 

c/Å 24.2024(8) 

α/° 90 

β/° 102.9920(10) 

γ/° 90 

Volume/Å
3
 4338.8(2) 

Z 4 

ρcalcg/cm
3
 1.587 

μ/mm
-1

 5.155 

F(000) 2080.0 

Crystal size/mm
3
 0.09 × 0.04 × 0.03 

Radiation GaKα (λ = 1.34139) 

2Θ range for data collection/° 6.282 to 121.316 

Index ranges –16 ≤ h ≤ 16, –18 ≤ k ≤ 18, –31 ≤ l ≤ 28 

Reflections collected 48646 

Independent reflections 9945 [Rint = 0.0686, Rsigma = 0.0638] 

Data/restraints/parameters 9945/0/566 

Goodness-of-fit on F
2
 1.136 

Final R indexes [I>=2σ (I)] R1 = 0.0471, wR2 = 0.1119 

Final R indexes [all data] R1 = 0.0576, wR2 = 0.1160 

Largest diff. peak/hole / e Å
-3

 1.36/–1.86 
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Fig. S3. The molecular packing structure of PtODP. Solvent molecules and hydrogen atoms were omitted for 

clarity. 
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Fig. S4. ORTEP drawings of single-crystal X-ray diffraction molecular structure of PtON-TBBI (CCDC 

2432339); hydrogen atoms are omitted for clarity. 

 

 

Fig. S5. The molecular packing structure of PtON-TBBI (CCDC 2432339). Hydrogen atoms were omitted for 

clarity. 
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Fig. S6. Photophysical properties of PtODP in various solvents. a Photoluminescence (PL) spectra of PtODP in 

various solvents at room temperature. b–p PL spectra of PtODP in n-hexane, tert-butylbenzene, toluene, butyl ether, 

isopropyl ether, ethyl ether, ethyl acetate, diethylene glycol dimethyl ether, tetrahydrofuran, dichloromethane, 

acetone, ethanol, methanol, N,N-dimethylformamide (DMF), and acetonitrile at room temperature, respectively; the 

maximum wavelength, full-width at half-maximum (FWHM) value, and Huang–Rhys factor (SM) value of PtODP 

were provided; the dielectric constant (ε) values are obtained from http://www.stenutz.eu/chem/solv23.php.  
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Table S3. Photophysical properties of PtODP in various solvents. 

solvent  ε 
λmax 

[nm/cm
-1

] 

λ0-1 

[nm/cm
-1

] 

∆E 

[cm
-1

] 

FWHM 

[nm] 
SM 

n-hexane  1.90 465.2/21496 486.4/20559 937 18.2 0.279 

tert-butylbenzene 2.38 463.2/21589 493.0/20284 1305 14.0 0.253 

toluene  2.40 463.8/21561 488.0/20492 1069 20.0 0.306 

butyl ether 3.08 463.6/21570 484.4/20644 926 19.0 0.308 

isopropyl ether 3.88 461.6/21664 479.4/20859 805 14.6 0.261 

ethyl ether  4.33 481.0/20790 509.5/19627 1163 15.0 0.271 

ethyl acetate  6.40 460.2/21730 485.5/20597 1133 20.2 0.323 

diethylene glycol dimethyl ether 7.30 460.4/21720 480.4/20816 904 20.0 0.326 

tetrahydrofuran (THF) 7.58 479.8/20842 508.4/19670 1172 15.6 0.275 

dichloromethane (DCM) 8.93 458.6/21805 485.8/20585 1220 16.0 0.278 

acetone  21.4 457.2/21872 486.2/20568 1304 16.2 0.288 

ethanol  24.5 461.2/21683 489.4/20433 1250 15.8 0.317 

methanol  32.6 460.2/21730 484.8/20627 1103 20.2 0.316 

N,N-dimethylformamide (DMF) 36.7 456.8/21891 484.6/20636 1255 16.2 0.283 

acetonitrile  38.8 460.6/21711 488.2/20483 1228 18.0 0.328 

ε, dielectric constant; λmax, maximum wavelength; FWHM, full-width at half-maximum; SM, Huang–Rhys factor. 

∆E is the vibrational energy between λmax and λ0-1, ∆E = λmax – λ0-1. 

 

Fig. S7. Photophysical properties of PtODP. Relationship between FWHM and SM of PtODP in various solvents. 
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Fig. S8. Luminescence mechanism, photophysical properties and theoretical calculation of PtODP. a Potential 

energy surface diagram of PtODP. b Photoluminescence (PL) spectra of PtODP in 2-MeTHF at 77 K and in 

dichloromethane at room temperature. c Theoretically calculated Huang-Rhys factor (HRF) and molecular 

vibrations of PtODP. 
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Table S4. Comparison of photophysical and electrochemical properties of Pt(II) complexes 

 λPL (nm)
 a

 λPL (nm)/FWHM (nm)/SM 
b
 ΦPL/τ (μs) 

c
 ET1 (eV) 

d
 HOMO/LUMO/Eg (eV)

 e
 

PtON-TBBI 445.8 456.0/25.1/0.467 89%/2.01 2.78 −5.35/−2.09/3.26 

PtODP 453.0 458.6/16.0/0.278 95%/3.67 2.74 −5.30/−2.12/3.18 
a
 Measured in 2-MeTHF at 77 K. 

b
 Measured in dichloromethane at room temperature. SM, Huang–Rhys factor. 

c
 

Measured in thermally evaporated 8 wt.% Pt(II) emitter:65 wt.% SiCzCz:27 wt.% SiTrzCz2 film, excitation 

wavelength = 340 nm. 
d
 Estimated from phosphorescent spectrum at 77 K, ET1 = 1240/λPL. 

e
 Calculated from redox 

potentials, HOMO = −(Eox + 4.8) eV, LUMO = −(Ered + 4.8) eV.  

 

 

Fig. S9. Electrochemical properties of PtODP. Cyclic voltammogram (CV) and differential pulse voltammetry 

(DPV) of PtODP in anhydrous N, N-dimethylformamide (DMF) under nitrogen atmosphere. 
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Fig. S10. Angle-dependent p-polarized PL spectra. Experimentally measured angle dependent p-polarized PL 

spectra of PtODP in SiCzCz: SiTrzCz2 films, and simulated curves with 100% (black) and 67% (gray) dipole 

orientation ratios (Θ). The doped SiCzCz: SiTrzCz2 films were fabricated by vacuum thermal evaporation. 

 

 

Fig. S11. The operational lifetimes of OLEDs based on Pt(II) emitters with a doping concentration of 8 wt.% 

at an L0 of 1000 cd/m
2
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Fig. S12. Pt(II) complexes-based deep-blue emitters. Chemical structures of dopants for Pt(II)-based deep-blue 

phosphorescent OLEDs discussed in this work. 
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Table S5. Device performance data for Pt(II)-based single-layer deep-blue phosphorescent OLEDs with 

CIEy < 0.15 

emitter/host CIE (x, y) 
λEL (nm)/ 

FWHM (nm) 
Lmax (cd/m2) 

EQE (%) a 

Max/1000/5000 
reference/year 

PtODP/SiCzCz:SiTrzCz2 b (0.129, 0.126) 464/19 84895 32.6/29.4/26.9 This work 

Pt-16/26mCPy (0.16, 0.13) 450/~45 ---- 15.7/<5/---- [1]/2012 

PtOO7/26mCPy (0.15, 0.10) 448/~50 ---- <9/0.5/---- [2]/2013 

PtON1/26mCPy (0.15, 0.13) 454/~49 ---- 25.2/16.8/---- [2]/2013 

PtON7/26mCPy (0.15, 0.14) 456/~51 ---- 23.7/15.4/---- [2]/2013 

PtON7-dtb/TAPC:PO15 (0.148, 0.079) 452/29 1555 24.8/11.0/---- [3]/2014 

Pt6/BCPO (0.14, 0.14) 452/--- 10676 9.7/7.6/5.5 [4]/2017 

Pt-R/mCP (0.138, 0.122) ~453/~37 1645 22.0/17.0/---- [5]/2021 

Pt-Ada/mCP (0.145, 0.110) ~451/~25 1078 21.2/14.5/---- [5]/2021 

Pt-AdaPh/mCP (0.137, 0.122) ~453/~37 4528 23.5/16.5/---- [5]/2021 

Pt-AdaTol/mCP (0.140, 0.120) ~453/~27.5 1593 22.0/15.5/---- [5]/2021 

PtON7-TMS/mCBP (0.142, 0.099) 452/30 2722 15.6/10.7/---- [6]/2022 

t-Pt-Ad/mCP (0.141, 0.092) ~453/~24 3258 20.3/6.3/---- [7]/2022 

Pt-NPT/mCP (0.139, 0.118) ~451/~37.5 3389 19.8/19.8/---- [7]/2022 

Pt-adNPT/mCP (0.143, 0.090) ~453/~24 2512 15.7/11.2/---- [7]/2022 

PtON7-tBu/oCBP:CNmCBP-CN (0.142, 0.143) ~452/~45 ---- 14.7/11.8/---- [8]/2022 

PtON-TBBI/oCBP:CNmCBP-CN (0.132, 0.147) ~453/~37 ---- 26.4/23.7/---- [8]/2022 

PtON1/BO1b/26mCPy (0.138, 0.130) 454/50 12982 24.8/20.9/15.0 [9]/2023 

PtON1/BO1b/mCBP (0.138, 0.142) 456/51 15722 27.1/21.8/15.6 [9]/2023 

PtON7-dtb/BO1b/mCBP (0.138, 0.088) 453/28 5670 27.6/16.0/7.9 [9]/2023 

PtON-TBBI/BO1b/mCBP (0.134, 0.104) 458/21 9377 28.0/19.0/13.4 [9]/2023 

PtON-TBBI/BO2/mCB (0.135, 0.103) 458/21 14481 22.2/14.9/10.4 [9]/2023 

PtON-TBBI/BO3a/mCBP (0.134, 0.107) 459/22 15765 19.6/14.8/10.8 [9]/2023 

PtON-TBBI/BO6/mCBP (0.133, 0.111) 459/22 10071 21.7/13.4/8.7 [9]/2023 

Pt-tmCyCz/oCBP:CNmCBP-CN (0.132, 0.138) 462/24 ---- 21.5/20.5/18 [10]/2024 

Pt-biPh4tBu/SiBCz:SiTrzCz2 (0.139, 0.149) 461/21 ~45000 21.8/19.9/16.4 [11]/2024 

Pt-SPCz/SiBCz:SiTrzCz2 (0.141, 0.131) 461/22 ---- 25.1/21.1/18 [12]/2024 

Pt-2CF3/SiBCz:SiTrzCz2 (0.140, 0.140) 461/18 48726 27.6/26.7/---- [13]/2024 

Pt-dip-bzim/3-CzPB (0.139, 0.090) 455/17 ---- 24.1/19.6/~12 [14]/2025 

 a EQE @ Max/1000/5000 cd m–2. b Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2 

(8:65:27, 35 nm)/mSiTrz (5 nm)/mSiTrz:Liq (50:50, 31 nm)/LiF (1.5 nm)/Al. 
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Fig. S13. Ir(III) complexes-based deep-blue emitters. Chemical structures of dopants for Ir(III)-based deep-blue 

phosphorescent OLEDs discussed in this work. 
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Table S6. Device performance data for Ir(III)-based single-layer deep-blue phosphorescent OLEDs with 

CIEy < 0.15 

emitter/host CIE (x, y) 
λEL (nm)/ 

FWHM (nm) 
Lmax (cd/m2) 

EQE (%) a 

max/1000/5000 

reference 

/year 

PtODP/SiCzCz:SiTrzCz2 b (0.129, 0.126) 464/19 84895 32.6/29.4/26.9 This work 

Ir(dfbmb)2(fptz)/UGH2 (0.16, 0.13) 434/---- <10000 6.0/~1/---- [15]/2008 

Ir(fppz)2(dfbdp)/UGH2:CzSi (0.15, 0.11) ----/---- 1817 11.9/<1/---- [16]/2009 

Ir(fpmi)2(tfpypz)/UGH2:CzSi (0.14, 0.10) 454/>50 3446 7.6/<6/---- [17]/2011 

(TF)2Ir(fptc)/mCPPO1 (0.15, 0.12) 448/>25 <2000 8.4/----/---- [18]/2013 

(HF)2Ir(fptc)/mCPPO1 (0.15, 0.13) 448/>25 <400 8.4/----/---- [18]/2013 

fac-Ir(pmp)3/TSPO1 (0.16, 0.09) ~426/~70 >7800  10.5/9.0/7.2 [19]/2016 

Ir1/t-BuCPO (0.15, 0.13) 430/>25 5080 11.2/8.3/4.0 [20]/2016 

Ir2/t-BuCPO (0.14, 0.11) 440/>25 4710 13.0/10.1/4.0 [20]/2016 

fac-Ir(dbfmi)3/TSPO1  (0.14, 0.11) ----/---- <2000 18.5/----/---- [21]/2017 

mer-Ir(dbfmi)3/TSPO1 (0.14, 0.14) ----/---- ---- 18.2/----/---- [21]/2017 

fac-Ir3/DPEPO (0.15, 0.05) 430/63 <500 13.4/----/---- [22]/2018 

Ir(fdpt)3(10 wt%)/DPEPO (0.15, 0.11) 458/>50 2727 22.5/11.1/---- [23]/2018 

Ir(fdpt)3(12 wt%)/DPEPO (0.15, 0.11) 458/>50 3195 19.4/12.6/---- [23]/2018 

mer-Ir(pmp_Bn)3/TSPO1 (0.149, 0.085) 445/---- 6453 24.8/13.1/9.5 [24]/2020 

m-tz1/DPEPO (0.15, 0.06) 432/66 ---- 10.0/-----/---- [25]/2021 

mer-Ir(tbpbp)3/DPEPO (0.16, 0.13) 449/>50 2386 24.9/<10/---- [26]/2022 

mer-Ir(tfpi_Bn)3/TSPO1 (0.16, 0.08) 424/66 632 12.2/<5/---- [27]/2023 

mer-Ir(tfpi_tmBn)3/TSPO1 (0.16, 0.08) 424/66 940 14.9/<5/---- [27]/2023 

f-ct6a/PPF (0.15, 0.12) 460/59 ---- 18.9/13.4/9.0 [28]/2024 

f-ct6b/PPF (0.14, 0.12) 456/57 ---- 23.4/17.1/13.0 [28]/2024 

f-ct6c/PPF (0.14, 0.13) 460/60 ---- 20.1/16.3/12.0 [28]/2024 

Irtb2b/DPEPO (0.15, 0.12) 456/72 ---- 14.8/5.7/---- [29]/2024 

f-Ir(ptBp)3/PPT (0.15, 0.10) 453/57 ---- 12.9/6.5/3.9 [30]/2024 

a EQE @ Max/1000/5000 cd m–2. b Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2 

(8:65:27, 35 nm)/mSiTrz (5 nm)/mSiTrz:Liq (50:50, 31 nm)/LiF (1.5 nm)/Al.  
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Fig. S14. Organic boron-nitrogen (BN) compounds-based deep-blue multiple resonance (MR) emitters. 
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Chemical structures of dopants for BN-based deep-blue MR-OLEDs discussed in this work. 

Table S7. Device performance data for BN-based single-layer deep-blue MR-OLEDs with CIEy < 0.15 

emitter/host CIE (x, y) 
λEL (nm)/ 

HWFM (nm) 
Lmax (cd/m2) 

EQE(%) a 
max/1000/5000 

reference/year 

PtODP/SiCzCz:SiTrzCz2 b (0.129, 0.126) 464/19 84895 32.6/29.4/26.9 This work 

DABNA-1/mCBP (0.13, 0.09) 459/28 <1000 13.5/----/---- [31]/2016 

v-DABNA/DOBNA-OAr (0.12, 0.11) 469/18 ---- 34.4/26.0/---- [32]/2019 

t-DAB-DPA/mCBP:mCBP-CN (0.13, 0.08) 459/26 ---- 27.9/8.1/<6 [33]/2021 

B-O-dpa/DPEPO (0.15, 0.05) 443/32 <1000 16.3/----/---- [34]/2021 

v-DABNA-O-Me/DOBNA-Tol (0.13, 0.10) 465/23 <20000 29.5/26.9/---- [35]/2021 

γ-Cb-B/mCBP (0.13, 0.13) 461/28 <3000 19.0/7.7/---- [36]/2021 

3tPAB/mCP (0.14, 0.08) 460/26 1100 19.3/<5.0/---- [37]/2021 

PAB/mCP (0.14, 0.08) 456/31 782 14.7/<5.0/---- [37]/2021 

2tPAB/mCP (0.14, 0.08) 456/27 1241 16.8/<5.0/---- [37]/2021 

BFCz-DABNA/mCBP-CN (0.13, 0.09) 463/26 ---- 28.0/5.1/---- [38]/2022 

pBP-DABNA-Me/mCBP:DPEPO (0.13, 0.09) 464/23 <1200 23.4/3.2/---- [39]/2022 

CzBNO/26DCzPPy (0.14, 0.08) 454/36 ---- 13.6/5.5/2.0 [40]/2022 

CzBO/mCBP (0.15, 0.05) 448/30 <2000 13.4/3.5/---- [41]/2022 

BOBO-Z/mCBP (0.15, 0.04) 445/18 <2000 13.6/3.3/---- [42]/2022 

BOBS-Z/mCBP (0.14, 0.06)  456/23 <4000 26.9/15.0/---- [42]/2022 

BSBS-Z/mCBP (0.13, 0.08) 463/22 <5000 26.8/15.9/---- [42]/2022 

m-ν-DABNA/DBFPO (0.12, 0.12) 471/18 ~2000 36.2/10.2/---- [43]/2022 

4F-𝜈-DABNA/DBFPO (0.13, 0.08) 464/18 800 35.8/----/---- [43]/2022 

4F-m-𝜈-DABNA/DBFPO (0.13, 0.06) 461/18 700 33.7/----/---- [43]/2022 

v-DABNA-F/DOBNA-Tol (0.12, 0.10) 468/15 ---- 26.6/23.4/---- [44]/2022 

mBP-DABNA-Me/mCP:DPEPO (0.12, 0.14) 468/28 <1500 24.3/----/---- [45]/2022 

α-3BNMes/DPEPO (0.18, 0.08) 443/49 ---- ----/----/---- [46]/2022 

m-DiNBO/mCBP (0.13, 0.10) 466/21 <1000 24.2/----/---- [47]/2022 

NBO/mCBP (0.14, 0.14) 459/45 <1000 16.8/----/---- [47]/2022 

BIC-mCz/PPF (0.16, 0.05) 432/32 ---- 19.4/3.0/---- [48] /2022 

mDBIC/PPF (0.16, 0.05) 431/42 ---- 13.5/----/---- [48] /2022 

1B-DTACrs/mCBP (0.154, 0.049) 440/30 ---- 1.31/----/---- [49] /2022 

2B-DTACrs/mCBP (0.150, 0.044) 447/26 ---- 14.8/----/---- [49] /2022 

R-DOBN /2,6-DCzPPy (0.14, 0.10) 459/38 <10000 23.9/8.6/---- [50]/2022 

R-DOBNT/2,6-DCzPPy (0.13, 0.12) 464/35 <10000 25.6/8.6/---- [50]/2022 

BN4/DPEPO (0.17, 0.04) 423/31 ---- 9.1/----/---- [51]/2022 

PAB/PPF (0.147, 0.052) 452/30 1540 13.1/----/---- [52]/2023 

PAB/PPF (0.138, 0.075) 456/30 1612 15.3/----/---- [52]/2023 

PAB/PPF (0.138, 0.073) 456/30 1651 15.1/----/---- [52]/2023 

Me-PABO/PPF (0.134, 0.089) 460/26 984 20.4/----/---- [52]/2023 

Me-PABS/PPF (0.121, 0.139) 468/32 2300 23.0/3.01/---- [52]/2023 

BSS-Cz/mCBP (0.13, 0.07) 462/27 2372 20.0/----/---- [53]/2023 

BSS-Cz/mCBP (0.13, 0.09) 464/29 3257 21.8/----/---- [53]/2023 

BSS-TBCz/mCBP (0.13, 0.07) 460/34 ---- 19.9/----/---- [54]/2023 
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BSS-Ph-TBCz/mCBP (0.12, 0.11) 468/31 ---- 20.7/----/---- [54]/2023 

Tp-DABNA/mCBP:DPEPO (0.14, 0.10) 462/25 ---- 24.3/----/---- [55]/2023 

TPD4PA/mCBP-CN (0.14, 0.06)  455/29 ---- 30.7/17.8/---- [56]/2023 

tBu-TPAD4PA/mCBP-CN (0.14, 0.07) 460/29 ---- 32.5/20.5/---- [56]/2023 

MesB-DIDOBNA-N/CzSi:TSPO1 (0.17, 0.05) 402/21 <1000 16.2/----/---- [57]/2023 

DIDOBNA-N/TSPO1 (0.15, 0.07) 429/70 <1000 15.2/----/---- [57]/2023 

NOBNacene/TSPO1 (0.17, 0.06) 409/37 <100 8.5/----/---- [58]/2023 

B-2OCz/DPEPO (0.15, 0.06) 432/70 <1000 8.4/----/---- [59]/2023 

B-2OCz-Si/DPEPO (0.16, 0.04) 423/49 <1000 15.2/----/---- [59]/2023 

NO-DBMR/DBFPO (0.12, 0.12) 469/26 ---- 33.7/<20/---- [60]/2023 

[B-N]N/mCBP (0.15, 0.08) 448/27.3 2002 16.7/7.6/---- [61]/2023 

SNA/PPF (0.14, 0.11) 460/38 985 7.2/----/---- [62]/2023 

SNB/PPF (0.13, 0.12) 466/32 1648 7.9/<1/---- [62]/2023 

OBN/DBFDPO (0.15, 0.09) 437/44 ---- 15.7/----/---- [63]/2023 

ODBN/DBFDPO (0.15, 0.10) 446/54 ---- 24.15/~5/---- [63]/2023 

NBN/DBFDPO (0.14, 0.09) 452/40 ---- 23.02/~6/---- [63]/2023 

A-BN/mCBP (0.13, 0.08) 462/24 ---- 41.5/10.4/---- [64]/2024 

BuDABNA/SiCzCz:SiTrzCz2 (0.14, 0.09) 460/27 ---- 25.1/----/---- [65]/2024 

CFDBO/mCBP (0.14, 0.12) 460/24 8985 20.7/<10/<5 [66]/2024 

ν-DABNA/DOBNA-OAr (0.12, 0.12) 469/18 ---- 33.8/25.1/---- [67]/2024 

ν-DABNA-Az1/DOBNA-OAr (0.14, 0.08) 459/~19 ---- 30.8/19.9/---- [67]/2024 

ν-DABNA-Az2/DOBNA-OAr (0.14, 0.06) 458/~18 ---- 29.9/16.0/---- [67]/2024 

ν-DABNA-Az3/DOBNA-OAr (0.14, 0.10) 459/~19 ---- 33.0/22.4/---- [67]/2024 

DB/ DOBNA-OAr (0.154, 0.048) 443/26 10486 23.4/9.0/5.5 [68]/2024 

(P)-DB-O/DOBNA-OAr (0.150, 0.041) 445/24 11610 27.5/11.4/6.8 [68]/2024 

(M)-DB-S/DOBNA-OAr (0.148, 0.047) 447/24 11153 29.3/12.2/6.0 [68]/2024 

TIC-BO/CzSi (0.160, 0.050) 428/43 346 20.5/----/---- [69]/2024 

DOB-DABNA-A/DOBNA-Tol (0.145, 0.049) 452/24 ---- 23.3//21.6/---- [70]/2024 

DOB-DABNA-B-NP/DOBNA-Tol (0.117, 0.127) 471/23 ---- 27.4//24.0/---- [70]/2024 

f-DOABNA/DOBNA-Tol (0.153, 0.056) 445/28 4858 19.9/6.7/---- [71]/2024 

[B-N]N2/SiCzCz:SiTrzCz2 (0.152, 0.046) 441/20 8714 20.3/----/---- [72]/2024 

[B-N]N3/SiCzCz:SiTrzCz2 (0.141, 0.105) 459/40 19520 19.6/----/---- [72]/2024 

[B-N]N4/SiCzCz:SiTrzCz2 (0.134, 0.133) 466/30 29960 22.1/----/---- [72]/2024 

Py-BN/DOBNA-OAr (0.153, 0.045) 444/21 1967 15.8/3.9/---- [73]/2024 

Pm-BN/DOBNA-OAr (0.161, 0.045) 415/24 1261 5.8/2.5/---- [73]/2024 

A-BN/p-PhBCzPh (0.129, 0.105) 464/23 3259 24.8/4.8/---- [74]/2024 

iPrAuBN/mCP (0.154, 0.036) 442/19 ---- 14.8/----/---- [75]/2024 

NBOPO/mCBP (0.13, 0.12) 468/31 2709 16.4/2.51/---- [76]/2024 

DOBN/mCBP (0.15, 0.04) 449/20 1231 35.4/----/---- [77]/2024 

DPA-B2/SiCzCz:SiTrzCz2 (0.153, 0.055) 444/31 21620 28.9/9.3/---- [78]/2024 

DPA-B3/SiCzCz:SiTrzCz2 (0.150, 0.043) 450/15 24637 37.7/21.0/---- [78]/2024 

DPA-B4/SiCzCz:SiTrzCz2 (0.141, 0.050) 457/14 27911 39.2/28.7/---- [78]/2024 

Cz-B4/SiCzCz:SiTrzCz2 (0.138, 0.076) 457/26 27428 32.1/16.1/---- [78]/2024 
a
 EQE @ Max/1000/5000 cd m

–2
. 

b 
Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2 (8:65:27, 35 nm)/mSiTrz (5 

nm)/mSiTrz:Liq (50:50, 31 nm)/LiF (1.5 nm)/Al.
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Table S8. Device performance data for BN-based single-layer deep-blue hyperfluorescence (HF)-OLEDs 

with CIEy < 0.15 

sensitizer/emitter/host CIE (x, y) 
λEL (nm)/ 

FWHM (nm) 
Lmax (cd/m

2
) 

EQE(%) 
a
 

max/1000/5000
 

reference 

/year 

PtODP/SiCzCz:SiTrzCz2 
b
 (0.129, 0.126) 464/19 84895 32.6/29.4/26.9 This work 

Ir(cb)3/t-DABNA/mCBP (0.129, 0.108) <480/27 ---- 20.2/14.2/10.0 [79]/2019 

p4TCzPhBN/t-DABNA/DPEPO (0.13, 0.12) ~460/29 ---- 32.5/23.2/---- [80]/2020 

PtON7-dtb/v-DABNA/oCBP:mCBP-2CN (0.111, 0.141) 473/20 ---- 32.2/25.4/22.5 [81]/2021 

Pt-5/v-DABNA/mCBP (0.13, 0.12) 469/18 13200 23.4/22.4/19.8 [82]/2021 

DMAC-DPS/tDPAC-BN/DPEPO (0.14, 0.09) 460/28 1126 21.6/5.4/---- [83]/2022 

Ir-f-tpb1/t-DABNA/mCBP (0.13, 0.11) 462/30 <10000 29.6/~10/<5 [84]/2022 

Ir-f-CF3/t-DABNA/mCBP (0.13, 0.14) 464/30 8188 23.8/10.4/<10 [85]/2022 

TDBA-SAF/pBP-DABNA-Me/mCBP:DPEPO (0.133, 0.109) 462/22 ---- 30.1/4.8/---- [86]/2022 

3Cz2BN/BN1/DPFPO (0.14, 0.08) 457/28 8323 31.2/9.3/<8 [87]/2022 

3Cz2BN/BN2/DPFPO (0.13, 0.11) 467/23 14064 33.2/15.5/~10 [87]/2022 

3Cz2BN/BN3/DBFPO (0.14, 0.08) 458/23 18438 37.6/26.2/~16 [87]/2022 

DtBuAc-DBT/α-3BNMes/DBFPO (0.15, 0.10) ~460/49 <1000 15/----/---- [88]/2022 

PtON-TBBI/t-DABNA/SiCzCz: SiTrzCz2 (----, 0.051) ----/---- ---- 18.4/----/---- [89]/2022 

PtON-TBBI/TBE01/SiCzCz: SiTrzCz2 (----, 0.064) ----/---- ---- 24.2/----/---- [89]/2022 

PtON-TBBI/TBE02/SiCzCz: SiTrzCz2 (----, 0.058) ----/---- ---- 26.6/----/---- [89]/2022 

Ir-B3/v-DABNA/PPT (0.116,0.114) 473/---- 7823 26.2/17.9/~11.0 [90]/2022 

p4TzPhBN/C-BN/MCBP  (0.14, 0.07) 453/25 ---- 26.6/8.9/~6 [91]/2022 

TDBA-SAF/Tp-DABNA/mCBP:DPEPO
c
 (0.14, 0.13) 462/29 ---- 27.5/----/---- [92]2023 

TDBA-SAF/t-DABNA/mCBP:DPEPO
c
 (0.13, 0.14) 464/34 ---- 23.3/----/---- [92]2023 

Ir-f-ct6a/v-DABNA/PPF (0.12, 0.13) 472/22 ---- 26.2/18.4/14.8 [93]/2023 

Ir-f-ct6b/v-DABNA/PPF (0.12, 0.13) 472/22 ---- 25.1/17.7/13.0 [93]/2023 

Ir-f-ct6c/v-DABNA/PPF (0.12, 0.13) 472/22 ---- 25.8/17.3/12.5 [93]/2023 

Ir-f-ct1a/v-DABNA/mCBP (0.12, 0.14) 472/21 ---- 22.8/22.0/19.0 [94]/2023 

Ir-f-ct1b/v-DABNA/mCBP (0.12, 0.12) 472/20 ---- 27.9/24.5/21.0 [94]/2023 

Ir-f-ct1c/v-DABNA/mCBP (0.12, 0.11) 472/18 ---- 35.5/ 24.0/20.3 [94]/2023 

Ir-f-ct1d/v-DABNA/mCBP (0.17, 0.12) 472/20 ---- 19.2/15.4/13.4 [94]/2023 

3Cz2BN/SNA/PPF (0.14, 0.11) 458/30 13800 29.3/~20/<15 [95]/2023 

3Cz2BN/SNB/PPF (0.14, 0.12) 462/35 14659 29.1/~20/<15 [95]/2023 

CzBN/CzBN-mCP/2,6-DCzPPy (0.13, 0.14) 469/28 15749 30.6/23.8/18.0 [96]/2023 

m4TCzPhBN/DBCz-Mes/mCBP (0.14, 0.06) 452/17 <4000 33.9/8.5/<4.0 [97]/2023 

Ir-Β-4-TMS/v-DABNA/CzSi (0.127, 0.097) 467/18 6083 29.5/20.6/---- [98]/2023 

Ir-B-5-TMS/v-DABNA/CzSi (0.126,0.097) 467/18 8137 31.1/22.7/---- [98]/2023 

Ir-Β-4-TMS/v-DABNA/SiCzCz:SiTrzCz2 (0.119, 0.123) 470/17 54138 33.4/23.0/~19 [98]/2023 

Ir-Β-5-TMS/v-DABNA/SiCzCz:SiTrzCz2 (0.119, 0.123) 470/17 53037 33.4/24.1/~20 [98]/2023 

D-5CzBN/v-DABNA/SiCzCz: SiTrzCz2 (0.14,0.14) 468/19 ---- 29.2/24.1/17.5 [99]/2024 

Pt-dipPhCz/v-DABNA/SiCzCz:SiTrzCz2 (0.124, 0.116) 470/18 ---- 31.4/26.7/22.8 [100]/2024 

Pt-tmCyCz/v-DABNA/SiCzCz:SiTrzCz2 (0.116, 0.123) 472/19 ---- 33.9/31.2/26.0 [101]/2024 

Ir-f-ct5mix/v-DABNA/CzSi (0.127, 0.098) ~465/17 8220 32.0/20.1/~19 [102]/2024 
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Ir-f-ct5mix/v-DABNA/SiCzCz:SiTrzCz2 (0.120, 0.132) ~470/17 30476 30.3/25.5/~20 [102]/2024 

Ir-f-CN1/m-DINBO/mCPCN (0.13, 0.10) 467/20 2640 30.8/14.7/---- [103]/2024 

Ir-f-CN2/m-DINBO/mCPCN (0.14, 0.13) 467/19 3800 30.1/15.9/---- [103]/2024 

Ir-f-ct7a/t-DABNA/PPF (0.14, 0.09) 460/26.6 4887 32.5/14.9/10.0 [104]/2024 

Ir-f-ct7b/t-DABNA/PPF (0.14, 0.09) 460/26.5 3408 36.1/13.3/---- [104]/2024 

Ir-f-ct7c/t-DABNA/PPF (0.14, 0.09) 460/27 2345 26.4/12.4/---- [104]/2024 

Ir-f-ct9b/v-DABNA/SiCzCz:SiTrzCz2 (0.127, 0.123) 469/18 ---- 32.1/25.5/21.3 [105]/2024 

p4TCzPhBN/A-BN/mCBP (0.14, 0.09) 462/25 <2000 38.5/25.1/---- [106]/2024 

f-Ir(dfpb)3
/
t-DABNA/PPT (0.13,0.12) 466/30 ---- 14.3/4.5/---- [107]/2024 

f-Ir(tBpp)3
/
t-DABNA/PPT (0.14,0.10) 462/29 ---- 18.1/9.7/--- [107]/2024 

f-Ir(ptBp)3
/
v-DABNA/PPT (0.12,0.13) 473/20 ---- 16.3/9.4/--- [107]/2024 

f-Ir(ptBp)3
/
t-DABNA/PPT (0.14,0.10) 461/33 ---- 14.1/5.19/---- [107]/2024 

PtON-TBBI/t-DABNA/SiCzCz:SiTrzCz2 (0.138,0.102) 460/26 ---- 26.1/24.3/21 [12]/2024 

Pt-SPCz/t-DABNA/SiCzCz:SiTrzCz2 (0.136,0.096) 460/26 ---- 28.1/25.3/22 [12]/2024 

TBCz-XT/v-DABNA/PPF (0.131,0.104) 470/19 9362 24.0/13.0/---- [108]/2024 

DMAC-DPS/v-DABNA/PPF (0.131, 0.113) 470/18 12680 29.6/18.0/---- [108]/2024 

PPCz-Trz/v-DABNA/PPF (0.133, 0.128) 470/19 13030 28.6/11.8/---- [108]/2024 

TBCz-XT/t-DABNA/PPF (0.140, 0.104) 462/32 7588 25.0/6.4/---- [108]/2024 

DMAC-DPS/t-DABNA/PPF (0.135, 0.130) 462/29 7813 26.2/6.0/---- [108]/2024 

PPCz-Trz/t-DABNA/PPF (0.141, 0.125) 462/28 8001 25.9/5.4/---- [108]/2024 

TDBA-PAS/Py-BN/DOBNA-OAr (0.150, 0.052) 445/22 6467 27.7/16.1/---- [74]/2024 

3Cz2BN/DPACzBN2/2,6-DCzPPy (0.14, 0.13) 461/34 15180 28.5/25.2/---- [109]/2024 

mMDBA-DI/DPA-B4/SiCzCz:SiTrzCz2 (0.142, 0.099) 459/16 41607 44.6/38.8/---- [78]/2024 

a
 EQE @ Max/1000/5000 cd m

–2
. 

b Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2 

(8:65:27, 35 nm)/mSiTrz (5 nm)/mSiTrz:Liq (50:50, 31 nm)/LiF (1.5 nm)/Al.  
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Cartesian coordinates of the optimized structures 

PtODP_S0 

C                 -0.92003800    3.16854100    2.91330900 

C                 -2.83773000    1.66177300    1.56729700 

C                 -0.65320700    1.81354200    2.64638000 

C                 -2.06718200    3.77258700    2.44162700 

C                 -3.08076200    3.08743400    1.66377600 

C                 -1.64820000    1.04712700    2.00410700 

H                  0.27588500    1.34768800    2.95738700 

H                 -2.21487000    4.83678900    2.61420800 

H                 -5.68878000    2.10961500    2.54573400 

C                 -5.98892400    1.20148200    2.03691700 

C                 -6.74197700   -1.17893200    0.63959700 

C                 -5.10380900    0.54255300    1.18448600 

C                 -7.26375000    0.65386800    2.17087500 

C                 -7.63153900   -0.51547400    1.48530500 

C                 -5.46460500   -0.63428400    0.49666300 

H                 -7.98555300    1.14067300    2.82001900 

H                 -8.63159400   -0.91856700    1.61614600 

H                 -7.04039800   -2.08840500    0.13426500 

N                 -3.76033300    0.81239800    0.86487100 

C                 -3.31525600   -0.12525600    0.00686500 

N                 -4.32014500   -1.02628400   -0.21896400 

C                 -3.88909100   -2.30016900   -0.70090800 

C                 -2.82891800   -4.73262900   -1.49758100 

C                 -2.47735100   -2.45170400   -0.70519800 

C                 -4.75148500   -3.30458600   -1.11771600 

C                 -4.19973000   -4.53326700   -1.51201200 

C                 -1.96964000   -3.68919000   -1.10016400 

H                 -5.82196100   -3.14909300   -1.16461200 
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H                 -4.85727900   -5.33522600   -1.83441800 

H                 -2.39045100   -5.67977500   -1.79483000 

O                 -0.64806400   -4.02287700   -1.13477500 

H                  3.75570400   -3.81468600   -0.45570500 

C                  2.82455700   -3.26417800   -0.54152600 

C                  0.33640200   -1.80237500   -0.69249100 

C                  2.79872600   -1.87586500   -0.35710000 

C                  1.63509000   -3.91132100   -0.82604600 

C                  0.42150700   -3.19243500   -0.88138200 

C                  1.57677700   -1.18193800   -0.48184700 

H                  1.60184500   -4.98517500   -0.97767700 

C                  3.80315200   -0.91354500    0.01724100 

C                  5.20557100    1.38858500    0.92000300 

C                  5.14541000   -0.97639800    0.37853400 

C                  3.18554900    0.35742700    0.08700200 

C                  3.86457300    1.49601700    0.55906500 

C                  5.86069700    0.14938600    0.81795400 

H                  3.35089700    2.44230000    0.67922200 

H                  5.73270600    2.26126900    1.29377800 

N                  1.82502500    0.20698500   -0.27895600 

C                  1.02560700    1.24693700   -0.77585100 

C                 -0.54275700    3.34017100   -1.63202700 

C                  1.61686800    2.39583700   -1.32433900 

N                 -0.31844500    1.10833200   -0.74332400 

C                 -1.06865400    2.15088300   -1.15811500 

C                  0.84669200    3.47652800   -1.75641600 

H                  2.69241900    2.41735700   -1.42796900 

H                 -2.14006200    2.01426200   -1.09906900 

H                 -1.22958500    4.12784800   -1.91279000 

C                  1.52453900    4.72239800   -2.34583700 

C                  0.49935700    5.79602500   -2.75784700 

H                  1.02454000    6.66637000   -3.16625200 

H                 -0.09703600    6.14010000   -1.90542800 

H                 -0.18572700    5.43150100   -3.53157000 

C                  2.33948900    4.31541600   -3.59716200 

H                  2.82654700    5.19738500   -4.02935800 

H                  1.69197500    3.87479300   -4.36351800 

H                  3.12128700    3.58679300   -3.35842300 

C                  2.47432700    5.33292200   -1.28769200 

H                  2.95974800    6.22909900   -1.69152400 

H                  3.26294700    4.63185600   -0.99435900 

H                  1.92444000    5.62203600   -0.38498100 

C                  7.19796400   -0.33836100    1.10572000 

C                  9.44192400   -1.96881100    1.42708000 
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C                  8.39211700    0.22714400    1.56848800 

C                  7.16632900   -1.71673200    0.81656700 

C                  8.26152400   -2.55512200    0.96371600 

C                  9.50592400   -0.59739800    1.72507700 

H                  8.45193500    1.28668700    1.80145100 

H                  8.19551300   -3.61244300    0.72966800 

H                 10.43966800   -0.17353800    2.08357000 

H                 10.32526500   -2.58708400    1.55875100 

O                  5.91985500   -2.11110300    0.37573200 

Pt                -1.40697400    -0.79157900   -0.41775100 

H                 -0.19644100    3.76025600    3.46951700 

C                 -1.37823100   -0.37666800    1.84070500 

H                 -0.38994100   -0.70712600    2.15039400 

C                 -4.11885000    3.78350600    1.08597000 

H                 -4.86588300    3.30782600    0.46149500 

H                 -4.20359400    4.85568600    1.22919900 

H                 -2.16113000   -1.08079300    2.11279600 

 

PtODP_T1 

C                 -2.38853100    4.20508700    1.78888700 

C                 -3.16474800    1.62745000    1.08302200 

C                 -1.88076700    3.11248000    2.48483900 

C                 -3.28688100    4.00312600    0.74796600 

C                 -3.70722600    2.71868400    0.36601000 

C                 -2.25676300    1.80601700    2.15292700 

H                 -1.18637000    3.27415200    3.30391600 

H                 -3.68099000    4.86084900    0.20761000 

H                 -5.63884000    1.28556600    2.50873600 

C                 -5.72505500    0.27158200    2.13408200 

C                 -5.90002300   -2.41230600    1.18336700 

C                 -4.76185400   -0.26191700    1.27661600 

C                 -6.78686900   -0.55723700    2.50245900 

C                 -6.86883400   -1.87683300    2.03667800 

C                 -4.84309700   -1.58273300    0.79711100 

H                 -7.55386300   -0.17477200    3.16950200 

H                 -7.69698300   -2.50495400    2.35133300 

H                 -5.96308900   -3.44452100    0.86678700 

N                 -3.58228200    0.28584500    0.77033000 

C                 -2.88823700   -0.64497800    0.02365300 

N                 -3.69904900   -1.77079100    0.01868300 

C                 -3.17400200   -2.94159900   -0.57818700 

C                 -1.93121300   -5.14029500   -1.72149400 

C                 -1.79215600   -2.84295700   -0.85385200 

C                 -3.93949900   -4.06075000   -0.91470300 
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C                 -3.30069900   -5.16404400   -1.49013400 

C                 -1.20137900   -3.98292400   -1.40220400 

H                 -5.01348000   -4.07128200   -0.77972700 

H                 -3.88037400   -6.04340800   -1.75464400 

H                 -1.40815100   -5.99148800   -2.14487600 

O                  0.14517000   -4.09774300   -1.65954800 

H                  4.48254300   -3.56556400   -0.81410400 

C                  3.50109600   -3.11151700   -0.88887800 

C                  0.85792800   -1.83555000   -0.98743500 

C                  3.31344900   -1.73469700   -0.53763100 

C                  2.40207600   -3.82100300   -1.30025800 

C                  1.11402900   -3.21919300   -1.31858100 

C                  2.02050300   -1.14556800   -0.66580900 

H                  2.47225400   -4.86915500   -1.57248800 

C                  4.17567200   -0.75930200   -0.00682400 

C                  5.28827300    1.56587400    1.22580700 

C                  5.51346900   -0.72421400    0.42362100 

C                  3.41777000    0.45636400    0.17642800 

C                  3.95894500    1.58687300    0.80378000 

C                  6.08048800    0.40207200    1.01939000 

H                  3.34767900    2.46354300    0.98494600 

H                  5.70906700    2.43191200    1.72659600 

N                  2.12303500    0.22819200   -0.30273500 

C                  1.25848900    1.22269800   -0.78913400 

C                 -0.42225100    3.15057500   -1.78173800 

C                  1.77878700    2.43425100   -1.25495100 

N                 -0.07502200    0.93456200   -0.85545100 

C                 -0.86763600    1.91551200   -1.36490800 

C                  0.95807400    3.44682700   -1.75618600 

H                  2.85395400    2.55697800   -1.25063500 

H                 -1.91410300    1.66055400   -1.42966100 

H                 -1.15294400    3.86252900   -2.14453100 

C                  1.56159400    4.75570600   -2.28136300 

C                  0.47272800    5.75449500   -2.71779500 

H                  0.93983800    6.68277100   -3.06544800 

H                 -0.19855200    6.01062200   -1.88985900 

H                 -0.13341600    5.36258500   -3.54232000 

C                  2.46485500    4.45230200   -3.50173800 

H                  2.91037500    5.37823800   -3.88603400 

H                  1.88784100    3.99045600   -4.31080000 

H                  3.28183200    3.77051800   -3.24236100 

C                  2.41023200    5.42005600   -1.17048000 

H                  2.84547900    6.35858600   -1.53491000 

H                  3.23594800    4.77731200   -0.84672900 
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H                  1.79690300    5.64834400   -0.29116100 

C                  7.44585700    0.02851000    1.31946900 

C                  9.84305300   -1.39115600    1.56861100 

C                  8.55546200    0.65492000    1.90592500 

C                  7.58016400   -1.30403900    0.87451900 

C                  8.75161300   -2.03716100    0.98115000 

C                  9.74345200   -0.06449500    2.02363100 

H                  8.49223400    1.67971600    2.26108500 

H                  8.80924500   -3.06037600    0.62486000 

H                 10.61122000    0.40780200    2.47573100 

H                 10.78290100   -1.92514300    1.67453800 

O                  6.40029000   -1.76467800    0.32845100 

Pt                -0.96034100    -1.04462500    -0.66104000 

H                 -2.08408800    5.21334700    2.05746600 

C                 -4.74466200    2.68782400   -0.77245000 

H                 -4.45301100    3.52559700   -1.42126800 

C                 -6.15332800    3.03069800   -0.23558200 

H                 -6.14571800    3.95424600    0.35326500 

H                 -6.54063900    2.22600300    0.39744400 

H                 -6.85090600    3.16499300   -1.07089400 

C                 -4.82472900    1.45415100   -1.68840100 

H                 -5.29497700    0.59804500   -1.19832000 

H                 -3.84821900    1.13447000   -2.06212800 

H                 -5.44350200    1.70843900   -2.55729000 

C                 -1.73089000    0.64110300    2.98924300 

H                 -1.99118600   -0.29050800    2.48143800 

C                 -0.19757700    0.65603300    3.12596500 

H                  0.13365000   -0.22904900    3.68109300 

H                  0.15953700    1.53765800    3.67176300 

H                  0.28567400    0.63776400    2.14470700 

C                 -2.40667300    0.62205900    4.37662500 

H                 -2.05233900   -0.23667400    4.95888600 

H                 -3.49617800    0.54617900    4.29158700 

H                 -2.17498300    1.53144600    4.94458800 

 

PtON-TBBI_S0 

C -0.38933200 -4.71714500 0.55640100 

C -3.18080000 -4.62201800 0.74948500 

C -1.12196100 -5.88965000 0.81293700 

C -1.02028100 -3.48341200 0.39128900 

C -2.43032200 -3.48511100 0.46514600 

C -2.50379700 -5.83567700 0.92053400 

H -0.58077500 -6.82303400 0.93288400 

H -5.24773800 1.38586200 -0.96348900 
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C -5.33091200 0.32744500 -0.74384700 

C -5.51667000 -2.46822700 -0.22037200 

C -4.22036100 -0.41496000 -0.34764000 

C -6.54506700 -0.34789700 -0.86199200 

C -6.63178800 -1.72452700 -0.60641200 

C -4.29920600 -1.79417700 -0.08116800 

H -7.43211500 0.19916100 -1.16717200 

H -7.58631300 -2.23010700 -0.71942400 

H -5.60328900 -3.53445900 -0.06499800 

N -2.87365900 -0.05084300 -0.18349000 

C -2.12029200 -1.13865600 0.16996000 

N -3.00031200 -2.19192800 0.24792200 

C -2.37258300 1.24866400 -0.52428600 

C -1.49815400 3.75305500 -1.24808800 

C -1.41740800 1.37120100 -1.53266100 

C -2.89021700 2.36948900 0.12845800 

C -2.45994800 3.65242100 -0.23181400 

C -0.95630700 2.63944400 -1.90748900 

H -1.04781500 0.46901700 -2.00307800 

H -3.62050900 2.22143700 0.91496600 

H -1.15723800 4.74149600 -1.53986600 

C 0.09225700 2.84027100 -3.01774400 

C 1.30264100 3.61810200 -2.44779300 

H 1.75526400 3.07628600 -1.60963700 

H 1.01993400 4.61399700 -2.08950800 

H 2.06750300 3.74909000 -3.22258500 

C -0.53828400 3.65124900 -4.17516800 

H -0.88801500 4.63476200 -3.84284800 

H -1.39419000 3.11914500 -4.60585000 

H 0.19807400 3.81053400 -4.97216200 

C 0.60591000 1.50352200 -3.58736400 

H 1.07953600 0.88295700 -2.81883200 

H 1.35532100 1.69902600 -4.36231100 

H -0.19819300 0.92021900 -4.05018800 

C -3.00260200 4.92741100 0.44235000 

C -3.69027800 5.81652200 -0.62172200 

H -4.53205400 5.29126600 -1.08739800 

H -2.99814700 6.10919100 -1.41819100 

H -4.07555600 6.73395900 -0.16040600 

C -1.83421700 5.71179900 1.08527200 

H -1.08697300 6.01193200 0.34359300 

H -1.32696800 5.10517100 1.84465200 

H -2.20743000 6.62171100 1.57054800 

C -4.03336500 4.61497400 1.54431300 



 S49 / S52 
 

H -4.90857200 4.08723700 1.14842800 

H -4.38837700 5.54979000 1.99229400 

H -3.60257300 4.00746300 2.34862900 

Pt -0.13832100 -1.70194500 0.34702600 

O 0.96119000 -4.92129100 0.48942400 

C 1.90201800 -3.97147400 0.15741300 

C 4.03446300 -2.38843500 -0.62499000 

C 1.68117900 -2.58400400 0.17973900 

C 3.12789000 -4.56202100 -0.21613300 

C 4.19240700 -3.77884600 -0.62820700 

C 2.81138600 -1.83934500 -0.18457400 

H 3.19725600 -5.64508400 -0.20669200 

H 5.12305300 -4.23624700 -0.95243700 

N 2.92259400 -0.41261200 -0.23295800 

C 4.17946600 -0.09716200 -0.80514800 

C 4.88937900 -1.29866800 -1.04054000 

C 5.96137300 1.16084700 -1.80300000 

C 6.15512700 -1.25224100 -1.63474300 

C 4.69795100 1.13643600 -1.20788000 

C 6.69072100 -0.01985300 -2.00371400 

H 4.13365700 2.05539400 -1.09288900 

H 6.37660400 2.11266600 -2.12268500 

C 2.19227500 0.45277300 0.58379600 

C 0.76373500 2.14584200 2.21954100 

N 0.87931600 0.19508600 0.79431000 

C 2.82819400 1.53691900 1.21672500 

C 2.13005900 2.41511500 2.04230800 

C 0.20714100 1.03689900 1.60838900 

H 3.89524200 1.64695800 1.08430200 

H -0.83249600 0.78557100 1.76874500 

H 0.13167600 2.76540700 2.84270300 

C 2.86255300 3.57262500 2.73773200 

C 1.89906900 4.46544400 3.54294100 

H 2.45885500 5.28437200 4.00785200 

H 1.40146400 3.91112700 4.34661200 

H 1.12832700 4.91251100 2.90424400 

C 3.56774000 4.45075400 1.67698700 

H 4.08527800 5.28544000 2.16429500 

H 2.84550800 4.86829000 0.96601600 

H 4.31392200 3.88694000 1.10746500 

C 3.91857700 2.99058000 3.70858300 

H 4.45355100 3.80374500 4.21350500 

H 4.65843000 2.37639300 3.18516800 

H 3.44625100 2.36630000 4.47533900 



 S50 / S52 
 

H 6.70668500 -2.17028500 -1.81899200 

H 7.67246600 0.02591900 -2.46697200 

H -3.06663600 -6.73865900 1.13884700 

H -4.25406300 -4.58352600 0.87878800 

 

PtON-TBBI_T1 

C 0.61460300 -4.69815700 0.50482600 

C -2.12153200 -5.19016600 0.70952100 

C 0.16300800 -6.00880200 0.74221100 

C -0.25788800 -3.60366200 0.36716300 

C -1.65416200 -3.90392800 0.43337700 

C -1.20130800 -6.23671900 0.85830200 

H 0.89004100 -6.80822300 0.83539100 

H -5.43304200 0.26548500 -0.90849100 

C -5.28662700 -0.78381200 -0.67987000 

C -4.87861500 -3.54954000 -0.13934100 

C -4.03116900 -1.27059200 -0.31170300 

C -6.33958800 -1.69809200 -0.76143400 

C -6.13884300 -3.05747800 -0.49637100 

C -3.82168700 -2.64105300 -0.04238600 

H -7.32767700 -1.34522800 -1.04289400 

H -6.97167700 -3.75008100 -0.57448400 

H -4.74245600 -4.60905300 0.02621200 

N -2.79700200 -0.62834400 -0.19133800 

C -1.80536900 -1.53822400 0.16469400 

N -2.45937500 -2.77466700 0.23698700 

C -2.58910400 0.73528000 -0.55404500 

C -2.24778100 3.37081000 -1.29597800 

C -1.65930200 1.05564200 -1.54532800 

C -3.33922200 1.73396000 0.07597500 

C -3.18494000 3.07543700 -0.29581000 

C -1.46879500 2.38780000 -1.92764400 

H -1.09806500 0.24947700 -1.99992000 

H -4.03337200 1.44502500 0.85594500 

H -2.11701300 4.40652900 -1.59383300 

C -0.45496500 2.79408100 -3.01479400 

C 0.55862000 3.80075100 -2.41953700 

H 1.08676100 3.36220200 -1.56517800 

H 0.06983900 4.71841100 -2.07484400 

H 1.30176400 4.08299300 -3.17533900 

C -1.20286400 3.45968500 -4.19481400 

H -1.75479000 4.35112300 -3.87765500 

H -1.92030900 2.76447000 -4.64552900 

H -0.49190300 3.76550700 -4.97221800 



 S51 / S52 
 

C 0.33135700 1.58672500 -3.55997900 

H 0.89359700 1.07413500 -2.77166700 

H 1.05018200 1.92577400 -4.31458300 

H -0.32733900 0.85406100 -4.03988300 

C -3.99560700 4.21217800 0.35714200 

C -4.82402100 4.94149400 -0.72754600 

H -5.52739400 4.25369600 -1.21080300 

H -4.18736900 5.37052400 -1.50829900 

H -5.40156000 5.76003100 -0.28058800 

C -3.02953300 5.21878700 1.02633500 

H -2.33228300 5.65800300 0.30519600 

H -2.43683400 4.72947400 1.80831100 

H -3.59225700 6.03885000 1.48887100 

C -4.96873200 3.69614600 1.43447100 

H -5.70528500 2.99821100 1.02011300 

H -5.52070700 4.53828200 1.86659300 

H -4.44273700 3.19209200 2.25334700 

Pt 0.23882700 -1.69436000 0.34101200 

O 1.97165000 -4.60022900 0.40207100 

C 2.71045600 -3.49220700 0.14504100 

C 4.45467900 -1.48938900 -0.60072500 

C 2.18870300 -2.16858800 0.19005700 

C 4.04647800 -3.81918200 -0.21752600 

C 4.91487000 -2.83362800 -0.61836400 

C 3.14727600 -1.20459700 -0.14850900 

H 4.33263200 -4.86578800 -0.21646600 

H 5.92070300 -3.07284700 -0.94874400 

N 2.94653300 0.20090500 -0.20392700 

C 4.09134900 0.77054300 -0.78031800 

C 5.05014100 -0.25581500 -1.01608400 

C 5.56955300 2.37460400 -1.77063100 

C 6.28376400 0.05974700 -1.61228900 

C 4.34215200 2.08929100 -1.17674200 

C 6.54048400 1.37328300 -1.97634500 

H 3.59843900 2.86815600 -1.05344700 

H 5.77576500 3.39205700 -2.09096600 

C 2.03259300 0.89346300 0.62156300 

C 0.24655400 2.24111500 2.21019400 

N 0.79595600 0.34750300 0.79598900 

C 2.42248300 2.06280500 1.27246600 

C 1.53599900 2.78848900 2.08566100 

C -0.06133600 1.04617100 1.59266900 

H 3.44679900 2.39137300 1.15885700 

H -1.03132000 0.58822000 1.72933800 



 S52 / S52 
 

H -0.52073400 2.71736000 2.80806000 

C 1.99583200 4.06826400 2.79353300 

C 0.86876100 4.69509300 3.63610700 

H 1.23428400 5.60616800 4.12285400 

H 0.52303700 4.01572900 4.42358300 

H 0.00595000 4.97335900 3.01973200 

C 2.44879700 5.10631900 1.73794400 

H 2.77831000 6.03029700 2.22880000 

H 1.62778100 5.35660100 1.05637800 

H 3.28506200 4.73472900 1.13566300 

C 3.18335000 3.74449800 3.73264600 

H 3.52450800 4.65463000 4.24122900 

H 4.03597800 3.33084000 3.18379100 

H 2.89138600 3.01554600 4.49681200 

H 7.01855500 -0.71976700 -1.79407100 

H 7.48808400 1.63310800 -2.43928100 

H -1.56552900 -7.23888600 1.06464500 

H -3.17548700 -5.39154800 0.84325400 

 


