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Materials and Methods

Synthesis and Structural Characterization. Unless noted, all commercial reagents were purchased and used
as received without further purification. *H NMR spectra were recorded at 400 or 500 MHz, and **C NMR spectra
were recorded at 100 or 125 MHz NMR Bruker instruments in CDCl; or DMSO-dg solutions and chemical shifts
were referenced to tetramethylsilane (TMS) or residual protiated solvent. If CDCl;was used as solvent, '"H NMR
spectra were recorded with TMS (8 = 0.00 ppm) or residual CHCls (5 = 7.26 ppm) as internal references; *C NMR
spectra were recorded with TMS (6 = 0.00 ppm) or CDClI; (6 = 77.00 ppm) as internal references. If DMSO-dg was
used as solvent, 'H NMR spectra were recorded with TMS (& = 0.00 ppm) or residual DMSO (5 = 2.50 ppm) as
internal references; *C NMR spectra were recorded with TMS (8 = 0.00 ppm) and DMSO-ds (8 = 39.52 ppm) as
internal references. The following abbreviations (or combinations thereof) were used to explain 'H NMR
ultiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, m = multiplet, br = broad. All of the new
compounds were analyzed for HRMS on a Waters mass spectrometer using electrospray ionization in positive ion
mode of ESI-Q-TOF.

X-ray Crystallography. X-ray diffraction data were collected at 170 K on a Bruker D8 Venture
diffractometer using graphite-monochromated Mo-Ka radiation (4 = 0.71073 A) from a rotating anode generator.

Quantum Chemical Calculations. The theoretical calculations were performed using Gaussian 09 package.
The molecular geometries of ground states (Sg) were optimized with the density functional theory (DFT) method at
the B3LYP level. The DFT calculations were performed using a B3LYP function with a basis set of 6-31G(d) for C,
H, O and N atoms; the LANL2DZ basis set with ECP was used for Pt atoms.

Electrochemistry. Cyclic voltammetry and different pulsed voltammetry were performed using a CH1760E
electrochemical analyzeraccording previous report. 0.1 M tetra-n-butylammonium hexafluorophosphate was used
as the supporting electrolyte, anhydrous N, N-dimethylformamide, was used as the solvents for the Eox and Eeq
measurements, and the solutions were bubbled with nitrogen for 15 min prior to the test. Silver wire, platinum wire
and glassy carbon were used as pseudoreference electrode, counter electrode, and working electrode respectively.
Scan rate was 300 mV/s. The redox potentials are based on the values measured from different pulsed voltammetry
and are reported relative to an internal reference ferrocenium/ferrocene (Cp,Fe/Cp,Fe’). The reversibility of
reduction or oxidation was determined using CV. As defined, if the magnitudes of the peak anodic and the peak
cathodic current have an equal magnitude as scan speeds of 100 mV/s or slower, then the process is considered
reversible; if the magnitudes of the peak anodic and the peak cathodic currents are not equal, but the return sweeps
are nonzero, the process is considered quasi-reversible; otherwise, the process is considered irreversible.

Photophysical Measurements. The absorption spectra were measured on a Hitachi U-3900 UV-VS
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Spectrometer. Steady state emission experiments were performed on HITACHI F-7000 spectrometer. Low
temperature (77 K) emission spectra and lifetimes were measured in 2-MeTHF cooled with liquid nitrogen.
Lifetime measurements and quantum efficiency were measured using an Edinburgh FS5 Spectrofluorometer
equipped with an integrating sphere.

OLED Fabrication and Characterization. OLEDs were fabricated and tested in LN-FS1122 Evaporation
System (Shenyang Yarunfeng Technology Co., Ltd.). All devices were fabricated by vacuum thermal evaporation,
and were tested outside glove box after encapsulation. Prior to deposition, the prepatterned indium-tin-oxide (ITO)
coated glass substrates were cleaned by subsequent sonication in deionized water, acetone, and isopropanol. The
metal layer and organic layers were fabricated by vacuum thermal evaporation on the cleaned ITO glass substrate

under vacuum (< 4 = 10 Pa) with 4 A/s deposition rate for aluminum cathode and 2 A/s for organic layers.

OLEDs were fabricated using a device structure of indium tin oxide
(ITO)/2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HATCN) (20
nm)/1,1'-bis[4-(di-p-tolylamino)phenyl]cyclohexane (TAPC, 60

nm)/9-(3-(triphenylsilyl)phenyl)-9H-3,9"-bicarbazole (SiCzCz, 5 nm)/8 wt.% emitter:65 wt.% SiCzCz:27 wt.%
9,9'-(6-(3-(triphenylsilyl)phenyl)-1,3,5-triazine-2,4-diyl)bis(9H-carbazole) (SiTrzCz2) (35
nm)/2-phenyl-4,6-bis(3-(triphenylsilyl)phenyl)-1,3,5-triazine (mSiTrz, 5 nm)/mSiTrz:lithium quinolin-8-olate (Liq)
(50:50, 31 nm)/LiF (1.5 nm)/Al. The device areas were 9.00 mm® (3.0 mm x 3.0 mm). The current
density-voltage-luminance characteristics of OLEDs were measured using a Keithey 2400 Source meter and a
Keithey 2000 Source multimeter equipped with a calibrated silicon photodiode following standard procedures
[Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices.
Adv. Mater. 15, 1043-1048 (2003)]. The electroluminescence (EL) spectra were recorded with a multichannel

spectrometer (PMA12, Hamamatsu Photonics).
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Synthesis and Characterization of Tetradentate Pt(I1) Complexes

Synthesis of PtODP:

cl Br
1.2 equiv \©/
\_/ 4 mol% Pdy(dba), = = 30 mol% Cul =
N + 8 mol% SPhos }\‘ / }\‘ / 60 mol% 2-picolinic acid }\‘ /
e, 2.0 equiv tBUONa N 10.0 equiv Py-HCl 20equivKsPO,  Cl Y
o

N _ N T ——
toluene DMI DMSO
O 110 °C, 24 h O 180 °C, 19 h O 100°C, 12 h O
MeO o 83% (42.35g) MeO 90% (35.67 g) HO o 85% (18.10 g) o °©

ODP1 ODP2 ODP3 ODP4

2.0 equiv 4 )/Q
3 mol% Pdy(dba)s =
)/Q 6 mol% JohnPhos ) \ J 1.05 equiv Pt(COD)ClI,
2.0 equiv tBuONa 2.0 equiv NH4PFg N 3.0 equw NaOAc
QNH toluene CH(OEt)3 ~ pen
NH, 100 °C, 5 h 75°C,3h 180°C,72h
82% (9.50 g)

85% (7.60 g) 36%

LODP

Synthesis of 5-(4-(tert-butyl)pyridin-2-yl)-5H-benzofuro[3,2-c]carbazol-3-ol (ODP2):
3-Methoxy-5H-benzofuro[3,2-c]carbazole ODP1 (34.86 0, 121.33 mmol, 1.0 equiv),
4-(tert-butyl)-2-chloropyridine (24.70 g, 145.59 mmol, 1.2 equiv), t-BuONa (23.32 g, 242.66 mmol, 2.0 equiv),
Pd,(dba); (4.44 g, 4.85 mmol, 4 mol%) and dicyclohexyl(2',6'-dimethoxybiphenyl-2-yl)phosphane (SPhos, 3.98 g,
9.71 mmol, 8 mol%) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The
flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then
toluene (300 mL) was added into the flask under nitrogen atmosphere at room temperature. Then the flask was
placed in an oil bath and the reaction mixture was stirred at 110 °C for 24 hours, the reaction was monitored by
TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, filtered and
washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified
through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30:1—-20:1) to obtain the
desired product as a brown solid 42.35 g in 83% yield. ‘H NMR (500 MHz, CDCl5): 6 (ppm) 1.43 (s, 9H), 3.90 (s,
3H), 7.06 (dd, J = 8.5, 2.0 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.36 (dd, J = 5.5, 2.0 Hz, 1H), 7.38 (td, J = 7.5, 1.5 Hz,
1H), 7.43-7.46 (m, 1H), 7.69 (d, J = 1.0 Hz, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 8.5 Hz, 1H), 7.98 —7.99(m,
1H), 8.42 (d, J = 8.5 Hz, 1H), 8.67 (dd, J = 5.5, 0.5 Hz, 1H).

Synthesis of 5-(4-(tert-butyl)pyridin-2-yl)-5H-benzofuro[3,2-c]carbazol-3-ol (ODP3): Compound ODP2
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(41.00 g, 97.50 mmol, 1.0 equiv) and Py-HCI (112.67 g, 975.00 mmol, 10.0 equiv) were added sequentially to a dry
three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this
evacuation and backfill procedure was repeated twice. Then DMI (10 mL) was added into the flask under nitrogen
atmosphere at room temperature. Then the flask was placed in an oil bath and the reaction mixture was stirred and
heated at 180 °C for 19 hours, the reaction was monitored by TLC until the reaction was completed. The reaction
mixture was cooled down to room temperature, diluted with ethyl acetate. The mixture was washed with water, the
organic layer was separated, and dried over Na,SO,, filtered. The filtrate was concentrated under reduced pressure
and beating with ethyl acetate and petroleum ether, filtered to obtain the desired product as a white solid 35.67 g in
90% vyield. *H NMR (500 MHz, DMSO-ds): & (ppm) 1.40 (s, 9H), 6.94 (dd, J = 8.5, 2.0 Hz, 1H), 7.17 (d, J = 2.0
Hz, 1H), 7.43 (td, J = 7.5, 0.5 Hz, 1H), 7.50 (td, J = 8.5, 1.5 Hz, 1H), 7.56 (dd, J = 5.0, 1.5 Hz, 1H), 7.70 (d, J = 9.0
Hz, 1H), 7.74 (d, J = 1.5 Hz, 1H), 7.83 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 8.5 Hz, 1H), 8.15 (dd, J = 7.5, 0.5 Hz, 1H),
8.20 (d, J = 8.5 Hz, 1H), 8.67 (d, J = 5.0 Hz, 1H), 9.81 (s, 1H). *C NMR (125 MHz, DMSO): & (ppm) 30.13, 34.94,
97.07, 107.00, 108.72, 111.22, 111.63, 113.07, 116.51 (2C), 116.81, 119.62, 120.24, 122.72, 123.24, 124.44, 125.85,
139.55, 140.64, 149.38, 149.48, 150.85, 155.55, 157.13, 163.16.

Synthesis of  5-(4-(tert-butyl)pyridin-2-yl)-3-(3-chlorophenoxy)-5H-benzofuro[3,2-c]carbazole  (ODP4):
Compound ODP3 (16.74 g, 41.18 mmol, 1.0 equiv), 1-bromo-3-chlorobenzene (9.46 g, 49.42 mmol, 1.2 equiv),
Cul (1.57 g, 8.24 mmol, 30 mol%), 2-picolinic acid (2.03 g, 16.47 mmol, 60 mol%) , and K3PO,4(17.48 g, 82.36
mmol, 2.0 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask
was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then
DMSO (200 mL) was added into the flask under nitrogen atmosphere at room temperature. Then the flask was
placed in an oil bath and the reaction mixture was stirred at 100 °C for 12 hours, the reaction was monitored by
TLC until the reaction was completed. The reaction mixture was cooled down to room temperature, and diluted
with ethyl acetate. The mixture was washed with water, the organic layer was separated, and dried over Na,SOy,
filtered. The filtrate was concentrated under reduced pressure and the residue was purified through column
chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30:1) to obtain the desired product as a white
solid 18.10 g in 85% yield. *H NMR (500 MHz, DMSO): & (ppm) 1.32 (s, 9H), 7.10 (ddd, J = 8.5, 2.5, 1.0 Hz, 1H),
7.17-7.27 (m, 3H), 7.33 (d, J = 2.0 Hz, 1H), 7.43 (t, J = 8.5 Hz, 1H), 7.46 (td, J = 7.5, 1.0 Hz, 1H), 7.50-7.56 (m,
2H), 7.74 (d, J = 2.0 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 8.186 (d, J = 8.5 Hz, 1H), 8.193
(dd,J=7.5, 2.5 Hz, 1H), 8.45 (d, J = 8.5 Hz, 1H), 8.64 (d, J = 5.5 Hz, 1H).

Synthesis of N'-(2,6-diisopropylcyclohexa-1,3-dien-1-yl)benzene-1,2-diamine (5): Compound
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N-(2,6-diisopropylcyclohexa-1,3-dien-1-yl)-2-nitroaniline (6.0 g, 20.11 mmol, 1.0 equiv) and SnCl,-2H,0 (18.15 g,
80.43 mmol, 4.0 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The
flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then
EtOH (60 mL) and ethyl acetate (60 mL) were added into the flask under nitrogen atmosphere at room temperature.
Then the flask was placed in an oil bath and the reaction mixture was stirred and heated at 78 °C for 12 hours, the
reaction was monitored by TLC until the reaction was completed. The reaction mixture was cooled down to room
temperature, and quenched with NaHCO;. The mixture was extracted with ethyl acetate, the organic layer was
separated, and dried over Na,SQ,, filtered. The filtrate was concentrated under reduced pressure and the residue
was purified through column chromatography on silica gel (eluent: petroleum ether/ dichloromethane = 15:1-10:1)
to obtain the desired product as a purple solid 4.70 g in 87% yield. *H NMR (500 MHz, DMSO-ds): 6 (ppm) 1.01 (s,
6H), 1.12 (s, 6H), 3.05-3.10 (m, 2H), 4.79 (s, 2H), 5.77 (dd, J = 7.5, 1.0 Hz, 1H), 5.95 (s, 1H), 6.29 (td, J = 7.5, 1.5
Hz, 1H), 6.41 (td, J = 7.5, 1.5 Hz, 1H), 6.59 (dd, J = 7.5, 1.5 Hz, 1H), 7.18 (t, J = 6.0 Hz, 1H), 7.20 (s, 1H), 7.23
(dd, J=9.0, 5.5 Hz, 1H).

Syntesis of
1-(3-((5-(4-(tert-butyl)pyridin-2-yl)-5H-benzofuro[3,2-c]carbazol-3-yl)oxy)phenyl)-3-(2,6-diisopropylphenyl)-1H-
benzo[d]imidazol-3-ium(LODP): Compound ODP4 (8.00 g, 15.47 mmol, 1.0 equiv), 5 (4.98 g, 18.57 mmol, 1.2
equiv), Pd,(dba); (425 mg, 0.46 mmol, 3 mol%), 2-(Di-tert-butylphosphino)biphenyl (JohnPhos, 277 mg, 0.93
mmol, 6 mol%), and t-BuONa (2.97 g, 30.95 mmol, 2.0 equiv) were added sequentially to a dry three-necked flask
equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and
backfill procedure was repeated twice. Then toluene (80 mL) was added and the mixture was heated at 100 °C
under a nitrogen atmosphere for 5 hours. After the reaction was completed, the mixture was cooled to room
temperature and concentrated under reduced pressure. The residue was purified through column chromatography on
silica gel (eluent: petroleum ether/ethyl acetate = 30:1) to obtain the desired product diamine as powder solid 9.50 g
in 82% yield. The intermediate diamine was not stable enough and easily oxidized by air, thereby, directly used for
the next step. The diamine (7.40 g, 9.88 mmol, 1.0 equiv), and NH4PFs (3.22 g, 19.76 mmol, 2.0 equiv) were added
to dry three-necked flask equipped with a magnetic stir bar. Then CH(OEt); (30 mL) was added and the mixture
was heated at 75 °C under a nitrogen atmosphere for 3 hours. After the reaction was completed by TLC monitoring,
the mixture was cooled down to room temperature. Then concentrated under reduced pressure. The residue was
purified through column chromatography on silica gel (eluent: petroleum ether/dichloromethane = 1:1-

dichloromethane/ethyl acetate = 50:1) to obtain the desired product as powder solid 7.60 g in 85% yield. *H NMR
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(500 MHz, CDCly): 6 (ppm) 1.02 (d, J = 6.5 Hz, 6H), 1.23 (d, J = 7.0 Hz, 6H), 1.42 (s, 9H), 2.15-2.21 (m, 2H),
7.30 (d, J=8.5Hz, 1H), 7.31 (dd, J = 8.5, 1.5 Hz, 1H), 7.35 (t, J = 2.5 Hz, 1H), 7.37-7.38 (m, 1H), 7.39 (d, J= 1.5
Hz, 1H), 7.41 (s, 1H), 7.42 (s, 1H), 7.48 (td, J = 7.5, 1.0 Hz, 1H), 7.56 (dd, J = 8.0, 1.0 Hz, 1H), 7.59-7.69 (m, 6H),
7.72 (d, J = 9.0 Hz, 1H), 7.75 (t, J = 8.5 Hz, 2H), 7.95 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 8.00 (dd, J =
7.5, 0.5 Hz, 1H), 8.59 (d, J = 8.5 Hz, 1H), 8.63 (d, J = 5.5 Hz, 1H), 9.64 (s, 1H). *C NMR (125 MHz, CDCl,): ¢
(ppm) 23.98, 24.17, 28.98, 30.52, 35.21, 103.49, 106.27, 109.17, 111.73, 113.34, 113.67, 114.29, 114.33, 116.75,
117.54, 118.00, 118.90, 119.27, 119.63, 119.88, 120.48, 122.99, 123.97, 124.82, 125.16, 125.68, 126.81, 128.75,
128.91, 129.10, 130.81, 132.11, 132.53, 132.56, 132.76, 133.04, 133.38, 140.56, 140.88, 146.14, 149.66, 150.79,
151.26, 154.05, 156.36, 159.99, 163.71. HRMS (ESI): calcd for Cs,H47N4O," [M+H]" 759.3694, found 759.3669.
Synthesis of platinum(Il) (PtODP): Ligand LODP (21.00 g, 23.21 mmol, 1.00 equiv), Pt(COD)CI, (9.12 g,
24.37 mmol, 1.05 equiv), and NaOAc (5.71 g, 69.62 mmol, 3.00 equiv) were added sequentially to a dry
three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this
evacuation and backfill procedure was repeated twice. Then Benzonitrile (PhCN, 765 mL) was added and the
mixture was stirred at 180 °C for 72 hours under a nitrogen atmosphere. After the reaction was completed, the
mixture was cooled down to room temperature and extracted with dichloromethane three times, dried over Na,SO,,
filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column
chromatography on silica gel (eluent: petroleum ether/dichloromethane = 4:1-2:1) to obtain the desired product as
yellow solid 7.95 g in 36% yield. *H NMR (500 MHz, CDCIl5): § (ppm) 0.68-1.09 (br, 6H), 1.04-1.27 (br, 6H),
1.28 (s, 9H), 2.81-3.40 (br, 2H), 6.10 (dd, J = 6.5, 2.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 7.22 (dd, J = 8.0, 0.5 Hz,
1H), 7.26 (d, J = 3.5 Hz, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.36-7.40 (m, 2H), 7.40-7.45 (m, 2H), 7.46-7.49 (m, 1H),
7.54 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.5
Hz, 1H), 8.00 (dd, J = 7.0, 0.5 Hz, 1H), 8.05 (d, J = 1.5 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H),
8.66 (d, J = 6.5 Hz, 1H). HRMS (ESI): calcd for CsHisNO,Pt [M+H]* 952.3185, found 952.3185. *C NMR

spectrum was not available because of the poor solubility of PtODP in solvents.
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LUMO+1

- —5.05 eV — —5.05 eV

Fig. S1. Density functional theory (DFT) calculated frontier orbits of Pt(l11) complexes. Frontier orbits and
energy levels of PtON-TBBI and PtODP. Optimized Sy were calculated using a B3LYP method with a basic set of
6-31G* for C, H, O, and N atoms and a LANL2DZ basic set for Pt atom.
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Fig. S2. Time-dependent density functional theory (TD-DFT) calculations of Pt(Il) complexes. Natural
transition orbital (NTO) analyses of PtON-TBBI and PtODP. Optimized S, were calculated using a B3LYP method

with a basic set of 6-31G* for C, H, O, and N atoms and a LANL2DZ basic set for Pt atom.
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Table S1. Calculated excitation energy (E), wavelength (1), oscillator strength (f), main orbital contribution
and charge characters of the excited states of PtODP?

excited state energy [eV] wavelength [nm] f major contributions
Sy 2.8303 438.06 0.0421 HOMO — LUMO (94%)
HOMO-2 — LUMO+1 (3%)
S; 3.0767 402.98 0.0049 HOMO-1 — LUMO (12%)

HOMO — LUMO+1 (79%)

HOMO-1 = LUMO (3%)
HOMO — LUMO (76%)

n zorm 4oL09 0.0000 HOMO — LUMO+2 (5%)
HOMO — LUMO+6 (2%)
HOMO-2 = LUMO (14%)
HOMO-1 — LUMO (11%)
- 0,
T, 2.8477 435.38 0.0000 HOMO-1 — LUMO+2 (6%)

HOMO — LUMO (7%)
HOMO — LUMO-1 (9%)
HOMO — LUMO+2 (22%)

HOMO-1 = LUMO (59%)
Ts 2.9454 420.95 0.0000 HOMO — LUMO+1 (9%)
HOMO — LUMO+2 (14%)

HOMO-2 5> LUMO+1 (4%)
HOMO-1— LUMO (17%)
HOMO — LUMO (7%)
HOMO — LUMO+1 (58%)

T4 2.9768 416.50 0.0000

HOMO-2 = LUMO (24%)
HOMO-2 — LUMO+1 (12%)
Ts 3.0743 403.29 0.0000 HOMO-2 — LUMO+6 (3%)
HOMO-1 — LUMO+1 (7%)
HOMO-1 — LUMO+2 (10%)

HOMO-4 — LUMO (7%)
HOMO-4 — LUMO+1 (2%)
HOMO-4 — LUMO+2 (4%)

HOMO-2 — LUMO (6%)
HOMO-2 — LUMO+1 (3%)

HOMO-1 — LUMO (3%)

HOMO-1 — LUMO+1 (20%)
HOMO-1 — LUMO+2 (19%)
HOMO — LUMO (2%)

HOMO — LUMO+1 (3%)

HOMO — LUMO+2 (6%)

HOMO — LUMO+7 (2%)

Ts 3.2040 386.97 0.0000

HOMO-4 > LUMO+1 (2%)
HOMO-4 — LUMO+2 (3%)
T 3.2663 379.59 0.0000 HOMO-1 — LUMO+1 (35%)
HOMO-1 — LUMO+2 (27%)
HOMO — LUMO+2 (14%)

 Optimized Sy were calculated using a B3LYP method with a basic set of 6-31G* for C, H, O, and N atoms and a
LANL2DZ basic set for Pt atom.
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Table S2. Crystal data and structure refinements of PtODP CH,Cl,

Compound PtODP CH,CI,
CCDC number 2416736
Empirical formula Cs3H46CILN,O,Pt
Formula weight 1036.93
Temperature/K 170.00
Crystal system monoclinic
Space group P2,/c
alA 12.8455(4)
b/A 14.3225(5)
c/A 24.2024(8)
o/° 90
/e 102.9920(10)
v/° 90
Volume/A3 4338.8(2)
Z 4
peaicg/em’ 1.587
wmm™ 5.155
F(000) 2080.0
Crystal size/mm? 0.09 %0.04 %0.03
Radiation

GaKa (A = 1.34139)

20 range for data collection/°

6.282t0 121.316
Index ranges -16<h<16,-18<k<18,-31<1<28
Reflections collected 48646
Independent reflections 9945 [Riy = 0.0686, Rsigma = 0.0638]
Data/restraints/parameters 9945/0/566
Goodness-of-fit on F2 1.136

Final R indexes [I>=2c (I)]

R;=0.0471, wR, = 0.1119

Final R indexes [all data]

R, =0.0576, wR, = 0.1160

Largest diff. peak/hole / e A’

1.36/-1.86




Fig. S3. The molecular packing structure of PtODP. Solvent molecules and hydrogen atoms were omitted for
clarity.
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Fig. S4. ORTEP drawings of single-crystal X-ray diffraction molecular structure of PtON-TBBI (CCDC
2432339); hydrogen atoms are omitted for clarity.

Fig. S5. The molecular packing structure of PtON-TBBI (CCDC 2432339). Hydrogen atoms were omitted for
clarity.
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Fig. S6. Photophysical properties of PtODP in various solvents. a Photoluminescence (PL) spectra of PtODP in
various solvents at room temperature. b—p PL spectra of PtODP in n-hexane, tert-butylbenzene, toluene, butyl ether,
isopropyl ether, ethyl ether, ethyl acetate, diethylene glycol dimethyl ether, tetrahydrofuran, dichloromethane,
acetone, ethanol, methanol, N,N-dimethylformamide (DMF), and acetonitrile at room temperature, respectively; the
maximum wavelength, full-width at half-maximum (FWHM) value, and Huang—Rhys factor (Sy) value of PtODP
were provided; the dielectric constant (¢) values are obtained from http://www.stenutz.eu/chem/solv23.php.
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Table S3. Photophysical properties of PtODP in various solvents.

solvent . Amax . o1 . AE . FWHM .
[nm/cm™] [nm/cm™] [cm™] [nm]

n-hexane 1.90 465.2/21496  486.4/20559 937 18.2 0.279
tert-butylbenzene 2.38 463.2/21589  493.0/20284 1305 14.0 0.253
toluene 2.40 463.8/21561  488.0/20492 1069 20.0 0.306
butyl ether 3.08 463.6/21570  484.4/20644 926 19.0 0.308
isopropy! ether 3.88 461.6/21664  479.4/20859 805 14.6 0.261
ethyl ether 4.33 481.0/20790  509.5/19627 1163 15.0 0.271
ethyl acetate 6.40 460.2/21730  485.5/20597 1133 20.2 0.323
diethylene glycol dimethyl ether 7.30 460.4/21720  480.4/20816 904 20.0 0.326
tetrahydrofuran (THF) 7.58 479.8/20842  508.4/19670 1172 15.6 0.275
dichloromethane (DCM) 8.93 458.6/21805  485.8/20585 1220 16.0 0.278
acetone 21.4 457.2/21872  486.2/20568 1304 16.2 0.288
ethanol 245 461.2/21683  489.4/20433 1250 15.8 0.317
methanol 32.6 460.2/21730  484.8/20627 1103 20.2 0.316
N,N-dimethylformamide (DMF) 36.7 456.8/21891  484.6/20636 1255 16.2 0.283
acetonitrile 38.8 460.6/21711  488.2/20483 1228 18.0 0.328

¢, dielectric constant; Amax, maximum wavelength; FWHM, full-width at half-maximum; Sy;, Huang-Rhys factor.
AE is the vibrational energy between Amaxand Ag.1, AE = Amax— Ao-1.

22
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Fig. S7. Photophysical properties of PtODP. Relationship between FWHM and Sy, of PtODP in various solvents.
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Fig. S8. Luminescence mechanism, photophysical properties and theoretical calculation of PtODP. a Potential
energy surface diagram of PtODP. b Photoluminescence (PL) spectra of PtODP in 2-MeTHF at 77 K and in
dichloromethane at room temperature. ¢ Theoretically calculated Huang-Rhys factor (HRF) and molecular

vibrations of PtODP.
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Table S4. Comparison of photophysical and electrochemical properties of Pt(I11) complexes

Je(MM)? e (NM)/FWHM (nm)/Sy®  ®p/z(us)® Er(eV)?  HOMO/LUMOIE, (eV)*

PtON-TBBI 445.8 456.0/25.1/0.467 89%/2.01 2.78 —5.35/-2.09/3.26
PtODP 453.0 458.6/16.0/0.278 95%/3.67 2.74 —5.30/-2.12/3.18

 Measured in 2-MeTHF at 77 K. ® Measured in dichloromethane at room temperature. Sy, Huang—-Rhys factor. ©
Measured in thermally evaporated 8 wt.% Pt(Il) emitter:65 wt.% SiCzCz:27 wt.% SiTrzCz2 film, excitation
wavelength = 340 nm. d Estimated from phosphorescent spectrum at 77 K, E1; = 1240//p,. ¢ Calculated from redox
potentials, HOMO = —(E. + 4.8) eV, LUMO = —(Ejq + 4.8) eV.
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Fig. S9. Electrochemical properties of PtODP. Cyclic voltammogram (CV) and differential pulse voltammetry
(DPV) of PtODP in anhydrous N, N-dimethylformamide (DMF) under nitrogen atmosphere.
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Fig. S10. Angle-dependent p-polarized PL spectra. Experimentally measured angle dependent p-polarized PL
spectra of PtODP in SiCzCz: SiTrzCz2 films, and simulated curves with 100% (black) and 67% (gray) dipole
orientation ratios (®). The doped SiCzCz: SiTrzCz2 films were fabricated by vacuum thermal evaporation.
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Fig. S11. The operational lifetimes of OLEDs based on Pt(11) emitters with a doping concentration of 8 wt.%
at an L, of 1000 cd/m>.
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Fig. S12. Pt(11) complexes-based deep-blue emitters. Chemical structures of dopants for Pt(I1)-based deep-blue
phosphorescent OLEDs discussed in this work.
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Table S5. Device performance data for Pt(11)-based single-layer deep-blue phosphorescent OLEDs with

CIE,; <0.15

a
emitter/host CIE (X, y) F\j\/EI:(Mnn(]r)lin) Lnax (cd/m?) Eglio(jﬁzoo reference/year
PtODP/SiCzCz:SiTrzCz2 " (0.129, 0.126) 464/19 84895 32.6/29.4/26.9 This work
Pt-16/26mCPy (0.16, 0.13) 450/~45 15.7/<5/---- [1]/2012
PtOO7/26mCPy (0.15, 0.10) 448/~50 <9/0.5/---- [2]/2013
PtON1/26mCPy (0.15, 0.13) 454/~49 25.2/16.8/---- [2]/2013
PtON7/26mCPy (0.15, 0.14) 456/~51 23.7/15.4/--- [2]/2013
PtON7-dth/TAPC:PO15 (0.148,0.079)  452/29 1555 24.8/11.0/--- [3]/2014
Pt6/BCPO (0.14, 0.14) 452/--- 10676 9.7/7.6/5.5 [4]/2017
Pt-R/mCP (0.138,0.122) ~453/~37 1645 22.0/17.0/---- [5]/2021
Pt-Ada/mCP (0.145,0.110)  ~451/~25 1078 21.2/14.5/---- [5]/2021
Pt-AdaPh/mCP (0.137,0.122)  ~453/~37 4528 23.5/16.5/---- [5]/2021
Pt-AdaTol/mCP (0.140, 0.120)  ~453/~27.5 1593 22.0/15.5/---- [5]/2021
PtON7-TMS/mCBP (0.142,0.099)  452/30 2722 15.6/10.7/---- [6]/2022
t-Pt-Ad/mCP (0.141,0.092) ~453/~24 3258 20.3/6.3/---- [71/2022
Pt-NPT/mCP (0.139,0.118)  ~451/~37.5 3389 19.8/19.8/---- [71/2022
Pt-adNPT/mCP (0.143,0.090) ~453/~24 2512 15.7/11.2/---- [71/2022
PtON7-tBu/oCBP:CNmCBP-CN (0.142,0.143)  ~452/~45 14.7/11.8/---- [8]/2022
PtON-TBBI/oCBP:CNmCBP-CN (0.132,0.147) ~453/~37 26.4/23.7/---- [8]/2022
PtON1/BO1b/26mCPy (0.138, 0.130)  454/50 12982 24.8/20.9/15.0 [91/2023
PtON1/BO1b/mCBP (0.138, 0.142)  456/51 15722 27.1/21.8/15.6 [91/2023
PtON7-dtb/BO1b/mCBP (0.138, 0.088) 453/28 5670 27.6/16.0/7.9 [91/2023
PtON-TBBI/BO1b/mCBP (0.134, 0.104) 458/21 9377 28.0/19.0/13.4 [91/2023
PtON-TBBI/BO2/mCB (0.135,0.103)  458/21 14481 22.2/14.9/10.4 [91/2023
PtON-TBBI/BO3a/mCBP (0.134, 0.107)  459/22 15765 19.6/14.8/10.8 [91/2023
PtON-TBBI/BO6/mCBP (0.133,0.111)  459/22 10071 21.7/13.4/8.7 [91/2023
Pt-tmCyCz/0oCBP:CNmCBP-CN (0.132,0.138) 462/24 21.5/20.5/18 [10]/2024
Pt-biPh4tBu/SiBCz:SiTrzCz2 (0.139, 0.149) 461/21 ~45000 21.8/19.9/16.4 [11]/2024
Pt-SPCz/SiBCz:SiTrzCz2 (0.141,0.131)  461/22 25.1/21.1/18 [12]/2024
Pt-2CF3/SiBCz:SiTrzCz2 (0.140, 0.140) 461/18 48726 27.6/26.7/---- [13]/2024
Pt-dip-bzim/3-CzPB (0.139,0.090)  455/17 24.1/19.6/~12 [14]/2025

3 EQE @ Max/1000/5000 cd m™. ° Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2
(8:65:27, 35 nm)/mSiTrz (5 nm)/mSiTrz:Liq (50:50, 31 nm)/LiF (1.5 nm)/Al.
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Fig. S13. Ir(111) complexes-based deep-blue emitters. Chemical structures of dopants for Ir(111)-based deep-blue
phosphorescent OLEDs discussed in this work.
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Table S6. Device performance data for Ir(l11)-based single-layer deep-blue phosphorescent OLEDs with
CIE;<0.15

emitter/host CIE (x,Y) et (nm)/ Lnax (cd/m?) EQE (%) - reference
FWHM (nm) max/1000/5000 /year
PtODP/SiCzCz:SiTrzCz2" (0.129, 0.126)  464/19 84895 32.6/29.4/26.9 This work
Ir(dfomb),(fotz)/ UGH2 (0.16,0.13) 434/ <10000  6.0/~1/--- [15]/2008
I1(fpp2),(dfbdp)/UGH2:CzSi (015,011)  -eccfemms 1817 11.9/<1/--n- [16]/2009
Ir(fpmi),(tipypz)/ UGH2:CzSi (0.14,0.10)  454/>50 3446 7.6/<6/---- [17]/2011
(TF),Ir(fptc)/mCPPOL (0.15,0.12)  448/>25 <2000 8.4)-merfomn [18]/2013
(HF),Ir(fptc)/mCPPO1 (0.15,0.13)  448/>25 <400 8.4/—nrf e [18]/2013
fac-Ir(pmp)5/ TSPO1 (0.16,0.09)  ~426/~70 >7800 10.5/9.0/7.2 [19]/2016
IF1/t-BUCPO (0.15,013)  430/>25 5080 11.2/8.3/4.0 [20]/2016
Ir2/t-BUCPO (0.14,011)  440/>25 4710 13.0/10.1/4.0 [20]/2016
fac-Ir(dbfmi)y TSPOL (0.14,011)  —ooefomer <2000 18.5/---] - [21]/2017
mer-Ir(dbfmi)y TSPO1 (014,014)  —ecefoes 18.2/wwmefeen [21]/2017
fac-Ir3/DPEPO (0.15,005)  430/63 <500 13.4/-erf o [22]/2018
I(fdpt)s(10 Wt%)/DPEPO (0.15,0.11)  458/>50 2727 22.5/11. 1/ [23]/2018
Ir(fdpt)s(12 Wt%)/DPEPO (0.15,0.11)  458/>50 3195 19.4/12.6/-- [23]/2018
mer-Ir(pmp_Bn)y/TSPOL (0.149, 0.085)  445/---- 6453 24.8/13.1/9.5 [24]/2020
m-tz1/DPEPO (0.15,0.06)  432/66 10.0/-wnfen [25]/2021
mer-Ir(tbpbp),/DPEPO (0.16,0.13)  449/>50 2386 24.9/<10/---- [26]/2022
mer-Ir(tfpi_Bn)s/TSPOL (0.16,008)  424/66 632 12.2/<5/- [27]/2023
mer-Ir(tfpi_tmBn)y/TSPOL (0.16,008)  424/66 940 14.9/<5/-— [27]/2023
f-ct6a/PPF (0.15,0.12) 460/59 -—-- 18.9/13.4/9.0 [28]/2024
f-ct6b/PPF (0.14,0.12) 456/57 -—-- 23.4/17.1/13.0 [28]/2024
f-ct6c/PPF (0.14,0.13) 460/60 -—-- 20.1/16.3/12.0 [28]/2024
Irtb2b/DPEPO (0.15,0.12) 456/72 -—-- 14.8/5.7/---- [29]/2024
f-Ir(ptBp)s/PPT (0.15,010)  453/57 12.9/6.5/3.9 [30]/2024

3 EQE @ Max/1000/5000 cd m2. ° Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2
(8:65:27, 35 nm)/mSiTrz (5 nm)/mSiTrz:Liqg (50:50, 31 nm)/LiF (1.5 nm)/Al.
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Fig. S14. Organic boron-nitrogen (BN) compounds-based deep-blue multiple resonance (MR) emitters.
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Chemical structures of dopants for BN-based deep-blue MR-OLEDs discussed in this work.

Table S7. Device performance data for BN-based single-layer deep-blue MR-OLEDs with CIE, < 0.15

emitter/host CIE (x,y) /I1—|E\I7V(Ir:]l\m/l)/(nm) Lnax (cd/m?) ES,ESE{%%OZ reference/year
PtODP/SiCzCz:SiTrzCz2 " (0.129, 0.126) 464/19 84895 32.6/29.4/26.9 This work
DABNA-1/mCBP (0.13,0.09) 459/28 <1000 13.5/----/---- [31]/2016
v-DABNA/DOBNA-OAr (0.12,0.11) 469/18 34.4/26.0/---- [32]/2019
t-DAB-DPA/MCBP:mCBP-CN (0.13,0.08) 459/26 27.9/8.1/<6 [33]/2021
B-O-dpa/DPEPO (0.15, 0.05) 443/32 <1000 16.3/----/---- [34]/2021
v-DABNA-O-Me/DOBNA-Tol (0.13, 0.10) 465/23 <20000 29.5/26.9/---- [35]/2021
v-Cb-B/mCBP (0.13, 0.13) 461/28 <3000 19.0/7.7/---- [36]/2021
3tPAB/MCP (0.14, 0.08) 460/26 1100 19.3/<5.0/---- [37]/2021
PAB/MCP (0.14, 0.08) 456/31 782 14.7/<5.0/---- [37]/2021
2tPAB/MCP (0.14, 0.08) 456/27 1241 16.8/<5.0/---- [37]/2021
BFCz-DABNA/MCBP-CN (0.13, 0.09) 463/26 28.0/5.1/---- [38]/2022
pBP-DABNA-Me/mCBP:DPEPO (0.13, 0.09) 464/23 <1200 23.4/3.2/---- [39]/2022
CzBNO/26DCzPPy (0.14, 0.08) 454/36 13.6/5.5/2.0 [40]/2022
CzBO/mCBP (0.15, 0.05) 448/30 <2000 13.4/3.5/---- [41]/2022
BOBO-Z/mCBP (0.15, 0.04) 445/18 <2000 13.6/3.3/---- [42]/2022
BOBS-Z/mCBP (0.14, 0.06) 456/23 <4000 26.9/15.0/---- [42]/2022
BSBS-Z/mCBP (0.13,0.08) 463/22 <5000 26.8/15.9/---- [42]/2022
m-v-DABNA/DBFPO (0.12,0.12) 471/18 ~2000 36.2/10.2/---- [43]/2022
4F-1-DABNA/DBFPO (0.13, 0.08) 464/18 800 35.8/----/---- [43]/2022
4F-m-1-DABNA/DBFPO (0.13, 0.06) 461/18 700 33.7/----/---- [43]/2022
v-DABNA-F/DOBNA-Tol (0.12, 0.10) 468/15 26.6/23.4/---- [44]/2022
mBP-DABNA-Me/mCP:DPEPO (0.12,0.14) 468/28 <1500 24.3/----/---- [45]/2022
a-3BNMes/DPEPO (0.18, 0.08) 443/49 -mmef-me - [46]/2022
m-DINBO/mCBP (0.13,0.10) 466/21 <1000 24.2/----/---- [47]/2022
NBO/mCBP (0.14,0.14) 459/45 <1000 16.8/----/---- [47]/2022
BIC-mCz/PPF (0.16, 0.05) 432/32 19.4/3.0/---- [48] /2022
mDBIC/PPF (0.16, 0.05) 431/42 13.5/----/---- [48] /2022
1B-DTACrs/mCBP (0.154, 0.049) 440/30 1.31/----/---- [49] /2022
2B-DTACrs/mCBP (0.150, 0.044) 447/26 14.8/----/---- [49] /2022
R-DOBN /2,6-DCzPPy (0.14, 0.10) 459/38 <10000 23.9/8.6/---- [50]/2022
R-DOBNT/2,6-DCzPPy (0.13,0.12) 464/35 <10000 25.6/8.6/---- [50]/2022
BN4/DPEPO (0.17, 0.04) 423/31 9.1/----/---- [51]/2022
PAB/PPF (0.147, 0.052) 452/30 1540 13.1/----/---- [52]/2023
PAB/PPF (0.138, 0.075) 456/30 1612 15.3/----/---- [52]/2023
PAB/PPF (0.138, 0.073) 456/30 1651 15.1/----/---- [52]/2023
Me-PABO/PPF (0.134, 0.089) 460/26 984 20.4/----/---- [52]/2023
Me-PABS/PPF (0.121, 0.139) 468/32 2300 23.0/3.01/---- [52]/2023
BSS-Cz/mCBP (0.13,0.07) 462/27 2372 20.0/----/---- [53]/2023
BSS-Cz/mCBP (0.13, 0.09) 464/29 3257 21.8/----/---- [53]/2023
BSS-TBCz/mCBP (0.13,0.07) 460/34 19.9/----/---- [54]/2023
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BSS-Ph-TBCz/mCBP (0.12,0.11) 468/31 20,71 [54]/2023
Tp-DABNA/MCBP:DPEPO (0.14, 0.10) 462/25 24,3/ [55]/2023
TPD4PA/MCBP-CN (0.14, 0.06) 455/29 30.7/17.8/--- [56]/2023
tBu-TPAD4PA/MCBP-CN (0.14, 0.07) 460/29 32.5/20.5/--- [56]/2023
MesB-DIDOBNA-N/CzSi: TSPO1 (0.17, 0.05) 402/21 <1000 16.2/----/---- [57]/2023
DIDOBNA-N/TSPO1 (0.15, 0.07) 429170 <1000 152w/ - [57]/2023
NOBNacene/TSPO1 (0.17, 0.06) 409/37 <100 8.5/~ [58]/2023
B-20Cz/DPEPO (0.15, 0.06) 432/70 <1000 8.4/ [59]/2023
B-20Cz-Si/DPEPO (0.16, 0.04) 423/49 <1000 15.2/---] - [59]/2023
NO-DBMR/DBFPO (0.12,0.12) 469/26 33.7/<20/---- [60]/2023
[B-N]N/mCBP (0.15, 0.08) 448/27.3 2002 16.7/7.6/---- [61]/2023
SNA/PPF (0.14,0.11) 460/38 985 p i — [62]/2023
SNB/PPF (0.13,0.12) 466/32 1648 7.9/<1/---- [62]/2023
OBN/DBFDPO (0.15, 0.09) 437144 15.7/--] - [63]/2023
ODBN/DBFDPO (0.15, 0.10) 446/54 24.15/~5/---- [63]/2023
NBN/DBFDPO (0.14, 0.09) 452/40 23.02/~6/---- [63]/2023
A-BN/mCBP (0.13, 0.08) 462124 41.5/10.4/--- [64]/2024
BuDABNA/SICzCz:SiTrzCz2 (0.14, 0.09) 460/27 25.1/---n] - [65]/2024
CFDBO/mCBP (0.14,0.12) 460124 8985 20.7/<10/<5 [66]/2024
v-DABNA/DOBNA-OAr (0.12,0.12) 469/18 33.8/25.1/--- [67]/2024
v-DABNA-Az1/DOBNA-OAr (0.14, 0.08) 459/~19 30.8/19.9/--- [67]/2024
v-DABNA-AZz2/DOBNA-OAr (0.14, 0.06) 458/~18 29.9/16.0/---- [67]/2024
v-DABNA-Az3/DOBNA-OAr (0.14, 0.10) 459/~19 33.0/22.4/--- [67]/2024
DB/ DOBNA-OAr (0.154,0.048)  443/26 10486 23.4/9.0/5.5 [68]/2024
(P)-DB-O/DOBNA-OAr (0.150, 0.041)  445/24 11610 27.5/11.4/6.8 [68]/2024
(M)-DB-S/DOBNA-OAr (0.148,0.047)  447/24 11153 29.3/12.2/6.0 [68]/2024
TIC-BO/CZSi (0.160,0.050)  428/43 346 20.5/----]---- [69]/2024
DOB-DABNA-A/DOBNA-Tol (0.145,0.049)  452/24 23.3//21.6/---- [70]/2024
DOB-DABNA-B-NP/DOBNA-Tol  (0.117,0.127)  471/23 27.41124.0/--- [70]/2024
-DOABNA/DOBNA-Tol (0.153,0.056)  445/28 4858 19.9/6.7/--- [71]/2024
[B-N]N2/SiCzCz:SiTrzCz2 (0.152,0.046)  441/20 8714 20.3/----]---- [72]/2024
[B-N]N3/SiCzCz:SiTrzCz2 (0.141,0.105)  459/40 19520 19.6/----/---- [72]/2024
[B-N]N4/SiCzCz:SiTrzCz2 (0.134,0.133)  466/30 29960 22,1/l [72]/2024
Py-BN/DOBNA-OAr (0.153,0.045)  444/21 1967 15.8/3.9/--- [73]/2024
Pm-BN/DOBNA-OAr (0.161,0.045)  415/24 1261 5.8/2.5/--- [73]/2024
A-BN/p-PhBCzPh (0.129,0.105)  464/23 3259 24.8/4.8]--- [74]/2024
iPrAUBN/mCP (0.154,0.036)  442/19 14.8/----]---- [75]/2024
NBOPO/mCBP (0.13,0.12) 468/31 2709 16.4/2.51/--- [76]/2024
DOBN/mCBP (0.15, 0.04) 449/20 1231 35.4/---]---- [77]/2024
DPA-B2/SiCzCz:SiTrzCz2 (0.153,0.055)  444/31 21620 28.9/9.3/--- [78]/2024
DPA-B3/SiCzCz:SiTrzCz2 (0.150,0.043)  450/15 24637 37.7/21.0/--- [78]/2024
DPA-B4/SiCzCz:SiTrzCz2 (0.141,0.050)  457/14 27911 39.2/28.7/--- [78]/2024
Cz-B4/SiCzCz:SiTrzCz2 (0.138,0.076)  457/26 27428 32.1/16.1/--- [78]/2024

% EQE @ Max/1000/5000 cd m . ® Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2 (8:65:27, 35 nm)/mSiTrz (5
nm)/mSiTrz:Liq (50:50, 31 nm)/LiF (1.5 nm)/Al.
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Table S8. Device performance data for BN-based single-layer deep-blue hyperfluorescence (HF)-OLEDs
with CIE, <0.15

sensitizer/emitter/host CIE (x, ) Iﬁ/k/ﬂl\r?/(nm) Lmax (cd/im?) ES,E&%%; ;;Z:frence
PtODP/SiCzCz:SiTrzCz2 ° (0.129, 0.126) 464/19 84895 32.6/29.4/26.9 This work
Ir(ch)/t-DABNA/MCBP (0.129, 0.108) <480/27 20.2/14.2/10.0 [79]/2019
p4TCzPhBN/t-DABNA/DPEPO (0.13,0.12) ~460/29 - 32.5/23.2/---- [80]/2020
PtON7-dth/v-DABNA/oCBP:mCBP-2CN (0.111, 0.141) 473/20 - 32.2/25.4/22.5 [81]/2021
Pt-5/v-DABNA/mCBP (0.13,0.12) 469/18 13200 23.4/22.4/19.8 [82]/2021
DMAC-DPS/tDPAC-BN/DPEPO (0.14, 0.09) 460/28 1126 21.6/5.4/---- [83]/2022
Ir-f-tpb1/t-DABNA/MCBP (0.13,0.11) 462/30 <10000 29.6/~10/<5 [84]/2022
Ir-f-CFs/t-DABNA/MCBP (0.13,0.14) 464/30 8188 23.8/10.4/<10 [85]/2022
TDBA-SAF/pBP-DABNA-Me/mCBP:DPEPO (0.133,0.109) 462/22 30.1/4.8/--- [86]/2022
3Cz2BN/BN1/DPFPO (0.14, 0.08) 457/28 8323 31.2/9.3/<8 [87]/2022
3Cz2BN/BN2/DPFPO (0.13,0.11) 467/23 14064 33.2/15.5/~10 [87]/2022
3Cz2BN/BN3/DBFPO (0.14, 0.08) 458/23 18438 37.6/26.2/~16 [87]/2022
DtBuAc-DBT/a-3BNMes/DBFPO (0.15,0.10) ~460/49 <1000 - [88]/2022
PtON-TBBI/t-DABNA/SICzCz: SiTrzCz2 (-, 0.051) S 18.4/---]--- [89]/2022
PtON-TBBI/TBE01/SiCzCz: SiTrzCz2 (-, 0.064) S 24.2f--] - [89]/2022
PtON-TBBI/TBE02/SiCzCz: SiTrzCz2 (----, 0.058) S 26,6/~ [89]/2022
Ir-B3/v-DABNA/PPT (0.116,0.114) 473/---- 7823 26.2/17.9/~11.0 [901/2022
p4TzPhBN/C-BN/MCBP (0.14,0.07) 453/25 - 26.6/8.9/~6 [91]/2022
TDBA-SAF/Tp-DABNA/MCBP:DPEPO® (0.14,0.13) 462/29 27.5/---]---- [92]2023
TDBA-SAF/t-DABNA/MCBP:DPEPO® (0.13,0.14) 464/34 23.3/---]---- [92]2023
Ir-f-ct6a/v-DABNA/PPF (0.12,0.13) 472122 26.2/18.4/14.8 [93]/2023
Ir-f-ct6b/v-DABNA/PPF (0.12,0.13) 472122 25.1/17.7/13.0 [93]/2023
Ir-f-ct6c/v-DABNA/PPF (0.12,0.13) 472122 25.8/17.3/12.5 [93]/2023
Ir-f-ct1a/v-DABNA/MCBP (0.12,0.14) 472121 22.8/22.0/19.0 [94]/2023
Ir-f-ct1b/v-DABNA/MCBP (0.12,0.12) 472120 27.9/24.5/21.0 [94]/2023
Ir-f-ctlc/v-DABNA/MCBP (0.12,0.11) 472/18 35.5/24.0/20.3 [94]/2023
Ir-f-ctld/v-DABNA/MCBP (0.17,0.12) 472/20 -—- 19.2/15.4/13.4 [94]/2023
3Cz2BN/SNA/PPF (0.14,0.11) 458/30 13800 29.3/~20/<15 [95]/2023
3Cz2BN/SNB/PPF (0.14,0.12) 462/35 14659 29.1/~20/<15 [95]/2023
CzBN/CzBN-mCP/2,6-DCzPPy (0.13,0.14) 469/28 15749 30.6/23.8/18.0 [96]/2023
m4TCzPhBN/DBCz-Mes/mCBP (0.14, 0.06) 452/17 <4000 33.9/8.5/<4.0 [97]/2023
Ir-B-4-TMS/v-DABNA/CzSi (0.127, 0.097) 467/18 6083 29.5/20.6/---- [98]/2023
Ir-B-5-TMS/v-DABNA/CzSi (0.126,0.097) 467/18 8137 31.1/22.7/---- [98]/2023
Ir-B-4-TMS/v-DABNA/SiCzCz:SiTrzCz2 (0.119, 0.123) 470/17 54138 33.4/23.0/~19 [98]/2023
Ir-B-5-TMS/v-DABNA/SiCzCz:SiTrzCz2 (0.119, 0.123) 470/17 53037 33.4/24.1/~20 [98]/2023
D-5CzBN/v-DABNA/SiCzCz: SiTrzCz2 (0.14,0.14) 468/19 -—- 29.2/24.1/17.5 [99]/2024
Pt-dipPhCz/v-DABNA/SiCzCz:SiTrzCz2 (0.124, 0.116) 470/18 -—- 31.4/26.7/122.8 [100]/2024
Pt-tmCyCz/v-DABNA/SiCzCz:SiTrzCz2 (0.116, 0.123) 472/19 -— 33.9/31.2/26.0 [101]/2024
Ir-f-ct5Smix/v-DABNA/CzSi (0.127, 0.098) ~465/17 8220 32.0/20.1/~19 [102]/2024
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Ir-f-ct5mix/v-DABNA/SiICzCz:SiTrzCz2 (0.120, 0.132) ~470/17 30476 30.3/25.5/~20 [102]/2024

Ir-f-CN1/m-DINBO/mCPCN (0.13,0.10) 467/20 2640 30.8/14.7/-- [103]/2024
Ir-f-CN2/m-DINBO/mCPCN (0.14,0.13) 467/19 3800 30.1/15.9/--- [103]/2024
Ir-f-ct7a/t-DABNA/PPF (0.14, 0.09) 460/26.6 4887 32.5/14.9/10.0 [1041/2024
Ir-f-ct7b/t-DABNA/PPF (0.14, 0.09) 460/26.5 3408 36.1/13.3/-- [1041/2024
Ir-f-ct7c/t-DABNA/PPF (0.14, 0.09) 460/27 2345 26.4/12.4/-- [1041/2024
Ir-f-ct9b/v-DABNA/SICzCz:SiTrzCz2 (0.127, 0.123) 469/18 32.1/25.5/21.3 [105]/2024
p4TCzPhBN/A-BN/mCBP (0.14, 0.09) 462/25 <2000 38.5/25.1/--- [106]/2024
f-Ir(dfpb)s'+-DABNA/PPT (0.13,0.12) 466/30 14.3/4.5/--- [1071/2024
f-Ir(tBpp)st-DABNA/PPT (0.14,0.10) 462/29 18.1/9.7/-- [1071/2024
f-Ir(ptBp)s'v-DABNA/PPT (0.12,0.13) 473120 16.3/9.4/--- [1071/2024
f-Ir(ptBp)st-DABNA/PPT (0.14,0.10) 461/33 14.1/5.19/--- [107]/2024
PtON-TBBI/t-DABNA/SiICzCz:SiTrzCz2 (0.138,0.102) 460/26 26.1/24.3/21 [12]/2024

Pt-SPCz/t-DABNA/SICzCz:SiTrzCz2 (0.136,0.096) 460/26 28.1/25.3/22 [12]/2024

TBCz-XT/-DABNA/PPF (0.131,0.104) 470/19 9362 24.0/13.0/--- [108]/2024
DMAC-DPS/v-DABNA/PPF (0.131, 0.113) 470/18 12680 29.6/18.0/--- [108]/2024
PPCz-Trz/v-DABNA/PPF (0.133, 0.128) 470/19 13030 28.6/11.8/--- [108]/2024
TBCz-XT/t-DABNA/PPF (0.140, 0.104) 462/32 7588 25.0/6.4/--- [108]/2024
DMAC-DPS/t-DABNA/PPF (0.135, 0.130) 462/29 7813 26.2/6.0/---- [108]/2024
PPCz-Trz/t-DABNA/PPF (0.141, 0.125) 462/28 8001 25.9/5 4/ [108]/2024
TDBA-PAS/Py-BN/DOBNA-OAr (0.150, 0.052) 445/22 6467 27.7/16.1/-- [741/2024

3Cz2BN/DPACZBN2/2,6-DCzPPy (0.14,0.13) 461/34 15180 28.5/25.2/--- [109]/2024
mMDBA-DI/DPA-B4/SiCzCz:SiTrzCz2 (0.142, 0.099) 459/16 41607 44.6/38.8/--- [78]/2024

2 EQE @ Max/1000/5000 cd m2 P Device structure: ITO/HATCN (20 nm)/TAPC (60 nm)/SiCzCz (5 nm)/PtQS1:SiCzCz:SiTrzCz2
(8:65:27, 35 nm)/mSiTrz (5 nm)/mSiTrz:Liqg (50:50, 31 nm)/LiF (1.5 nm)/Al.
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Cartesian coordinates of the optimized structures

PtODP_S,
C -0.92003800  3.16854100  2.91330900
C -2.83773000  1.66177300  1.56729700
C -0.65320700  1.81354200  2.64638000
C -2.06718200  3.77258700  2.44162700
C -3.08076200  3.08743400  1.66377600
C -1.64820000  1.04712700  2.00410700
H 0.27588500  1.34768800  2.95738700
H -2.21487000  4.83678900  2.61420800
H -5.68878000  2.10961500  2.54573400
C -5.98802400  1.20148200  2.03691700
C -6.74197700  -1.17893200  0.63959700
C -5.10380900  0.54255300  1.18448600
C -7.26375000  0.65386800  2.17087500
C -7.63153900  -0.51547400  1.48530500
C -5.46460500  -0.63428400  0.49666300
H -7.98555300  1.14067300  2.82001900
H -8.63159400  -0.91856700  1.61614600
H -7.04039800  -2.08840500  0.13426500
N -3.76033300  0.81239800  0.86487100
c -3.31525600  -0.12525600  0.00686500
N -4.32014500  -1.02628400  -0.21896400
c -3.88909100  -2.30016900  -0.70090800
c -2.82891800  -4.73262900  -1.49758100
C 247735100  -2.45170400  -0.70519800
c -4.75148500  -3.30458600  -1.11771600
c -4.19973000  -4.53326700  -1.51201200
C -1.96964000  -3.68919000  -1.10016400
H -5.82196100  -3.14909300  -1.16461200
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-4.85727900
-2.39045100
-0.64806400
3.75570400
2.82455700
0.33640200
2.79872600
1.63509000
0.42150700
1.57677700
1.60184500
3.80315200
5.20557100
5.14541000
3.18554900
3.86457300
5.86069700
3.35089700
5.73270600
1.82502500
1.02560700
-0.54275700
1.61686800
-0.31844500
-1.06865400
0.84669200
2.69241900
-2.14006200
-1.22958500
1.52453900
0.49935700
1.02454000
-0.09703600
-0.18572700
2.33948900
2.82654700
1.69197500
3.12128700
2.47432700
2.95974800
3.26294700
1.92444000
7.19796400
9.44192400

-5.33522600
-5.67977500
-4.02287700
-3.81468600
-3.26417800
-1.80237500
-1.87586500
-3.91132100
-3.19243500
-1.18193800
-4.98517500
-0.91354500
1.38858500
-0.97639800
0.35742700
1.49601700
0.14938600
2.44230000
2.26126900
0.20698500
1.24693700
3.34017100
2.39583700
1.10833200
2.15088300
3.47652800
2.41735700
2.01426200
4.12784800
4.72239800
5.79602500
6.66637000
6.14010000
5.43150100
4.31541600
5.19738500
3.87479300
3.58679300
5.33292200
6.22909900
4.63185600
5.62203600
-0.33836100
-1.96881100

-1.83441800
-1.79483000
-1.13477500
-0.45570500
-0.54152600
-0.69249100
-0.35710000
-0.82604600
-0.88138200
-0.48184700
-0.97767700
0.01724100
0.92000300
0.37853400
0.08700200
0.55906500
0.81795400
0.67922200
1.29377800
-0.27895600
-0.77585100
-1.63202700
-1.32433900
-0.74332400
-1.15811500
-1.75641600
-1.42796900
-1.09906900
-1.91279000
-2.34583700
-2.75784700
-3.16625200
-1.90542800
-3.53157000
-3.59716200
-4.02935800
-4.36351800
-3.35842300
-1.28769200
-1.69152400
-0.99435900
-0.38498100
1.10572000
1.42708000
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PtODP_T,
C

O0O0O0O0Z0ZIITITO0O0O0O0O00O00O0IITIITOOOOON

8.39211700
7.16632900
8.26152400
9.50592400
8.45193500
8.19551300
10.43966800
10.32526500
5.91985500
1.40697400
-0.19644100
-1.37823100
-0.38994100
-4.11885000
-4.86588300
-4.20359400
-2.16113000

-2.38853100
-3.16474800
-1.88076700
-3.28688100
-3.70722600
-2.25676300
-1.18637000
-3.68099000
-5.63884000
-5.72505500
-5.90002300
-4.76185400
-6.78686900
-6.86883400
-4.84309700
-7.55386300
-7.69698300
-5.96308900
-3.58228200
-2.88823700
-3.69904900
-3.17400200
-1.93121300
-1.79215600
-3.93949900

0.22714400
-1.71673200
-2.55512200
-0.59739800

1.28668700
-3.61244300
-0.17353800
-2.58708400
-2.11110300
-0.79157900

3.76025600
-0.37666800
-0.70712600

3.78350600

3.30782600

4.85568600
-1.08079300

4.20508700
1.62745000
3.11248000
4.00312600
2.71868400
1.80601700
3.27415200
4.86084900
1.28556600
0.27158200
-2.41230600
-0.26191700
-0.55723700
-1.87683300
-1.58273300
-0.17477200
-2.50495400
-3.44452100
0.28584500
-0.64497800
-1.77079100
-2.94159900
-5.14029500
-2.84295700
-4.06075000

1.56848800
0.81656700
0.96371600
1.72507700
1.80145100
0.72966800
2.08357000
1.55875100
0.37573200
-0.41775100
3.46951700
1.84070500
2.15039400
1.08597000
0.46149500
1.22919900
2.11279600

1.78888700
1.08302200
2.48483900
0.74796600
0.36601000
2.15292700
3.30391600
0.20761000
2.50873600
2.13408200
1.18336700
1.27661600
2.50245900
2.03667800
0.79711100
3.16950200
2.35133300
0.86678700
0.77033000
0.02365300
0.01868300
-0.57818700
-1.72149400
-0.85385200
-0.91470300
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-3.30069900
-1.20137900
-5.01348000
-3.88037400
-1.40815100
0.14517000
4.48254300
3.50109600
0.85792800
3.31344900
2.40207600
1.11402900
2.02050300
2.47225400
4.17567200
5.28827300
5.51346900
3.41777000
3.95894500
6.08048800
3.34767900
5.70906700
2.12303500
1.25848900
-0.42225100
1.77878700
-0.07502200
-0.86763600
0.95807400
2.85395400
-1.91410300
-1.15294400
1.56159400
0.47272800
0.93983800
-0.19855200
-0.13341600
2.46485500
2.91037500
1.88784100
3.28183200
2.41023200
2.84547900
3.23594800

-5.16404400
-3.98292400
-4.07128200
-6.04340800
-5.99148800
-4.09774300
-3.56556400
-3.11151700
-1.83555000
-1.73469700
-3.82100300
-3.21919300
-1.14556800
-4.86915500
-0.75930200
1.56587400
-0.72421400
0.45636400
1.58687300
0.40207200
2.46354300
2.43191200
0.22819200
1.22269800
3.15057500
2.43425100
0.93456200
1.91551200
3.44682700
2.55697800
1.66055400
3.86252900
4.75570600
5.75449500
6.68277100
6.01062200
5.36258500
4.45230200
5.37823800
3.99045600
3.77051800
5.42005600
6.35858600
477731200

-1.49013400
-1.40220400
-0.77972700
-1.75464400
-2.14487600
-1.65954800
-0.81410400
-0.88887800
-0.98743500
-0.53763100
-1.30025800
-1.31858100
-0.66580900
-1.57248800
-0.00682400
1.22580700
0.42362100
0.17642800
0.80378000
1.01939000
0.98494600
1.72659600
-0.30273500
-0.78913400
-1.78173800
-1.25495100
-0.85545100
-1.36490800
-1.75618600
-1.25063500
-1.42966100
-2.14453100
-2.28136300
-2.71779500
-3.06544800
-1.88985900
-3.54232000
-3.50173800
-3.88603400
-4.31080000
-3.24236100
-1.17048000
-1.53491000
-0.84672900
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H 1.79690300  5.64834400
C 7.44585700  0.02851000
C 9.84305300  -1.39115600
C 8.55546200  0.65492000
C 7.58016400  -1.30403900
C 8.75161300  -2.03716100
C 9.74345200  -0.06449500
H 8.49223400  1.67971600
H 8.80924500  -3.06037600
H 10.61122000  0.40780200
H 10.78290100  -1.92514300
o) 6.40029000  -1.76467800
Pt -0.96034100  -1.04462500
H -2.08408800  5.21334700
C -4.74466200  2.68782400
H -4.45301100  3.52559700
C -6.15332800  3.03069800
H -6.14571800  3.95424600
H -6.54063900  2.22600300
H -6.85090600  3.16499300
C -4.82472900  1.45415100
H -5.29497700  0.59804500
H -3.84821900  1.13447000
H -5.44350200  1.70843900
C -1.73089000  0.64110300
H -1.99118600  -0.29050800
C -0.19757700  0.65603300
H 0.13365000  -0.22904900
H 0.15953700  1.53765800
H 0.28567400  0.63776400
C -2.40667300  0.62205900
H -2.05233900  -0.23667400
H -3.49617800  0.54617900
H -2.17498300  1.53144600
PtON-TBBI_S,
C -0.38933200  -4.71714500
C -3.18080000  -4.62201800
c -1.12196100  -5.88965000
C -1.02028100  -3.48341200
C -2.43032200  -3.48511100
C -2.50379700  -5.83567700
H -0.58077500  -6.82303400
H -5.24773800  1.38586200

-0.29116100
1.31946900
1.56861100
1.90592500
0.87451900
0.98115000
2.02363100
2.26108500
0.62486000
2.47573100
1.67453800
0.32845100
-0.66104000
2.05746600
-0.77245000
-1.42126800
-0.23558200

0.35326500

0.39744400
-1.07089400
-1.68840100
-1.19832000
-2.06212800
-2.55729000

2.98924300

2.48143800
3.12596500
3.68109300
3.67176300
2.14470700
4.37662500

4.95888600
4.29158700
4.94458800

0.55640100
0.74948500
0.81293700
0.39128900
0.46514600
0.92053400
0.93288400
-0.96348900
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-5.33091200
-5.51667000
-4.22036100
-6.54506700
-6.63178800
-4.29920600
-7.43211500
-7.58631300
-5.60328900
-2.87365900
-2.12029200
-3.00031200
-2.37258300
-1.49815400
-1.41740800
-2.89021700
-2.45994800
-0.95630700
-1.04781500
-3.62050900
-1.15723800
0.09225700

1.30264100

1.75526400

1.01993400

2.06750300

-0.53828400
-0.88801500
-1.39419000
0.19807400

0.60591000

1.07953600

1.35532100

-0.19819300
-3.00260200
-3.69027800
-4.53205400
-2.99814700
-4.07555600
-1.83421700
-1.08697300
-1.32696800
-2.20743000
-4.03336500

0.32744500
-2.46822700
-0.41496000
-0.34789700
-1.72452700
-1.79417700
0.19916100
-2.23010700
-3.53445900
-0.05084300
-1.13865600
-2.19192800
1.24866400
3.75305500
1.37120100
2.36948900
3.65242100
2.63944400
0.46901700
2.22143700
4.74149600
2.84027100
3.61810200
3.07628600
4.61399700
3.74909000
3.65124900
4.63476200
3.11914500
3.81053400
1.50352200
0.88295700
1.69902600
0.92021900
4.92741100
5.81652200
5.29126600
6.10919100
6.73395900
5.71179900
6.01193200
5.10517100
6.62171100
4.61497400

-0.74384700
-0.22037200
-0.34764000
-0.86199200
-0.60641200
-0.08116800
-1.16717200
-0.71942400
-0.06499800
-0.18349000
0.16996000

0.24792200

-0.52428600
-1.24808800
-1.53266100
0.12845800

-0.23181400
-1.90748900
-2.00307800
0.91496600

-1.53986600
-3.01774400
-2.44779300
-1.60963700
-2.08950800
-3.22258500
-4.17516800
-3.84284800
-4.60585000
-4.97216200
-3.58736400
-2.81883200
-4.36231100
-4.05018800
0.44235000

-0.62172200
-1.08739800
-1.41819100
-0.16040600
1.08527200

0.34359300

1.84465200

1.57054800

1.54431300
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-4.90857200
-4.38837700
-3.60257300
-0.13832100
0.96119000
1.90201800
4.03446300
1.68117900
3.12789000
4.19240700
2.81138600
3.19725600
5.12305300
2.92259400
4.17946600
4.88937900
5.96137300
6.15512700
4.69795100
6.69072100
4.13365700
6.37660400
2.19227500
0.76373500
0.87931600
2.82819400
2.13005900
0.20714100
3.89524200
-0.83249600
0.13167600
2.86255300
1.89906900
2.45885500
1.40146400
1.12832700
3.56774000
4.08527800
2.84550800
4.31392200
3.91857700
4.45355100
4.65843000
3.44625100

4.08723700
5.54979000
4.00746300
-1.70194500
-4.92129100
-3.97147400
-2.38843500
-2.58400400
-4.56202100
-3.77884600
-1.83934500
-5.64508400
-4.23624700
-0.41261200
-0.09716200
-1.29866800
1.16084700
-1.25224100
1.13643600
-0.01985300
2.05539400
2.11266600
0.45277300
2.14584200
0.19508600
1.53691900
2.41511500
1.03689900
1.64695800
0.78557100
2.76540700
3.57262500
4.46544400
5.28437200
3.91112700
4.91251100
4.45075400
5.28544000
4.86829000
3.88694000
2.99058000
3.80374500
2.37639300
2.36630000

1.14842800
1.99229400
2.34862900
0.34702600
0.48942400
0.15741300
-0.62499000
0.17973900
-0.21613300
-0.62820700
-0.18457400
-0.20669200
-0.95243700
-0.23295800
-0.80514800
-1.04054000
-1.80300000
-1.63474300
-1.20788000
-2.00371400
-1.09288900
-2.12268500
0.58379600
2.21954100
0.79431000
1.21672500
2.04230800
1.60838900
1.08430200
1.76874500
2.84270300
2.73773200
3.54294100
4.00785200
4.34661200
2.90424400
1.67698700
2.16429500
0.96601600
1.10746500
3.70858300
4.21350500
3.18516800
4.47533900
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6.70668500
7.67246600
-3.06663600
-4.25406300

0.61460300

-2.12153200
0.16300800

-0.25788800
-1.65416200
-1.20130800
0.89004100

-5.43304200
-5.28662700
-4.87861500
-4.03116900
-6.33958800
-6.13884300
-3.82168700
-7.32767700
-6.97167700
-4.74245600
-2.79700200
-1.80536900
-2.45937500
-2.58910400
-2.24778100
-1.65930200
-3.33922200
-3.18494000
-1.46879500
-1.09806500
-4.03337200
-2.11701300
-0.45496500
0.55862000

1.08676100

0.06983900

1.30176400

-1.20286400
-1.75479000
-1.92030900
-0.49190300

-2.17028500
0.02591900

-6.73865900
-4.58352600

-4.69815700
-5.19016600
-6.00880200
-3.60366200
-3.90392800
-6.23671900
-6.80822300
0.26548500
-0.78381200
-3.54954000
-1.27059200
-1.69809200
-3.05747800
-2.64105300
-1.34522800
-3.75008100
-4.60905300
-0.62834400
-1.53822400
-2.77466700
0.73528000
3.37081000
1.05564200
1.73396000
3.07543700
2.38780000
0.24947700
1.44502500
4.40652900
2.79408100
3.80075100
3.36220200
4.71841100
4.08299300
3.45968500
4.35112300
2.76447000
3.76550700

-1.81899200
-2.46697200
1.13884700
0.87878800

0.50482600
0.70952100
0.74221100
0.36716300
0.43337700
0.85830200
0.83539100
-0.90849100
-0.67987000
-0.13934100
-0.31170300
-0.76143400
-0.49637100
-0.04238600
-1.04289400
-0.57448400
0.02621200
-0.19133800
0.16469400
0.23698700
-0.55404500
-1.29597800
-1.54532800
0.07597500
-0.29581000
-1.92764400
-1.99992000
0.85594500
-1.59383300
-3.01479400
-2.41953700
-1.56517800
-2.07484400
-3.17533900
-4.19481400
-3.87765500
-4.64552900
-4.97221800
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0.33135700
0.89359700
1.05018200
-0.32733900
-3.99560700
-4.82402100
-5.52739400
-4.18736900
-5.40156000
-3.02953300
-2.33228300
-2.43683400
-3.59225700
-4.96873200
-5.70528500
-5.52070700
-4.44273700
0.23882700
1.97165000
2.71045600
4.45467900
2.18870300
4.04647800
4.91487000
3.14727600
4.33263200
5.92070300
2.94653300
4.09134900
5.05014100
5.56955300
6.28376400
4.34215200
6.54048400
3.59843900
5.77576500
2.03259300
0.24655400
0.79595600
2.42248300
1.53599900
-0.06133600
3.44679900
-1.03132000

1.58672500
1.07413500
1.92577400
0.85406100
4.21217800
4.94149400
4.25369600
5.37052400
5.76003100
5.21878700
5.65800300
4.72947400
6.03885000
3.69614600
2.99821100
4.53828200
3.19209200
-1.69436000
-4.60022900
-3.49220700
-1.48938900
-2.16858800
-3.81918200
-2.83362800
-1.20459700
-4.86578800
-3.07284700
0.20090500
0.77054300
-0.25581500
2.37460400
0.05974700
2.08929100
1.37328300
2.86815600
3.39205700
0.89346300
2.24111500
0.34750300
2.06280500
2.78848900
1.04617100
2.39137300
0.58822000

-3.55997900
-2.77166700
-4.31458300
-4.03988300
0.35714200
-0.72754600
-1.21080300
-1.50829900
-0.28058800
1.02633500
0.30519600
1.80831100
1.48887100
1.43447100
1.02011300
1.86659300
2.25334700
0.34101200
0.40207100
0.14504100
-0.60072500
0.19005700
-0.21752600
-0.61836400
-0.14850900
-0.21646600
-0.94874400
-0.20392700
-0.78031800
-1.01608400
-1.77063100
-1.61228900
-1.17674200
-1.97634500
-1.05344700
-2.09096600
0.62156300
2.21019400
0.79598900
1.27246600
2.08566100
1.59266900
1.15885700
1.72933800
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-0.52073400
1.99583200
0.86876100
1.23428400
0.52303700
0.00595000
2.44879700
2.77831000
1.62778100
3.28506200
3.18335000
3.52450800
4.03597800
2.89138600
7.01855500
7.48808400
-1.56552900
-3.17548700

2.71736000
4.06826400
4.69509300
5.60616800
4.01572900
4.97335900
5.10631900
6.03029700
5.35660100
4.73472900
3.74449800
4.65463000
3.33084000
3.01554600
-0.71976700
1.63310800
-7.23888600
-5.39154800

2.80806000
2.79353300
3.63610700
4.12285400
4.42358300
3.01973200
1.73794400
2.22880000
1.05637800
1.13566300
3.73264600
4.24122900
3.18379100
4.49681200
-1.79407100
-2.43928100
1.06464500
0.84325400
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