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S1. Synthesized of {{Co(DCTP)]-3.5DM A}, (2)

0.1 mmol Co(NOs3),-6H,0, 0.05 mmol H,DCTP and 30 mg NaOAc were dissolved in 8 mL DMA.
After adding 200 pL HOAc, the mixture was sealed in 25 mL Teflon-lined stainless autoclave, and
then heated at 120 °C for 72 h. After cooling down to room temperature, purple block crystals were
obtained and washed with DMA for several times. Elemental analysis (%) for compound 2

(CoC37H44 5N6 507.5), caled: C 58.53, H 5.91, N 11.99; Found: C 58.69, H 5.77, N 12.11.

S2. Synthesized of aziridines
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The synthetic procedure was according to previous literature.' 40 mL CH,Cl, solution with 0.2
mol bromine was slowly dropped into 40 mL CH,Cl, solution with 0.2 mol dimethyl sulfide under
an ice-salt bath condition. Orange solids of bromodimethyl sulfonium bromide (A1) were formed
during stirring overnight. After filtration, A1 was washed with diethyl ether several times. Then, 160
mmol olefin was dropped into 160 mL CH3;CN solution with 160 mmol A1l under an ice-salt bath
condition. After stirring overnight, white solid A2 was formed, and then washed with fresh CH;CN
several times. Finally, 20-50 mmol amine solution was dropped into 20 mL H,O solution with 10
mmol A2, and the mixture was stirred overnight at room temperature. Then dropping 20 mL
saturated salt solution, the mixture was extracted with diethyl ether for three times and dried with

anhydrous MgSQO,. The product aziridines were obtained by rotary evaporation.

S3. General procedurefor the catalytic recyclable experiments

After completed catalytic reaction, the catalyst 1 was isolated by centrifugation, washed with fresh

CH,Cl, for three times and dried at 60 °C. The recovered catalyst was used for the next cycle.
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SA. General procedurefor the lodine adsor ption experiments

50 mg compound 1 was immersed in fresh CH,Cl, and exchanged CH,Cl, three times a day for 5
days. After heating at 130 °C, the prepared 1a was immersed in 0.01M I,/cyclohexane solution at
room temperature for 48 h. The block crystal changed from green to dark brown. [,@1a was washed

with fresh cyclohexane for several times and carried out the thermogravimetric analysis.

Immersing 15 mg L@1a in fresh CH3;CN solution for 1 h, the dark brown crystals changed to green

and the CH;CN solution changed from colorless to orange.

S5. General procedurefor the gas adsor ption experiments

120 mg compound 1 was immersed in fresh CH,Cl, for exchanging the free solvent molecules in the
framework. Fresh CH,ClI, was exchanged three times a day for 5 days, and then 1 was activated at

130 °C to obtain la. Activated 1a adsorbed N, at 77 K and CO, at 273 K/298 K, respectively.

S6. X-ray single crystal structure analysis

Crystal diffraction data of compounds 1 and 2 were collected on a SuperNova Single Crystal
diffractometer with graphite monochromatic Mo-Ko. radiation (A = 0.71073 A). The single-crystal
structure was solved by direct methods and refined by full-matrix least-squares with SHELXS-97
and SHELXL-97 programs.” Due to the highly disordered solvent molecules in frameworks, we used
PLATON/SQUEEZE programs’ to remove, and the number of free solvent molecules was
determined by elemental analysis and TG analysis. Detail single crystal data and structure

refinement for 1 and 2 were recorded in Table S1.
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Table S1. Crystal data and structure refinement for 1 and 2.

Identification code 1 2
Empirical formula NiCys sHsg5N9 50105 CoC37H445Ng 5075
Formula weight 929.17 759.22
Temperature/K 293(2) 293(2)
Crystal system tetragonal tetragonal
Space group P-4¢2 P4,/nme
a/A 22.2452(2) 22.5767(6)
b/A 22.2452(2) 22.5767(6)
c/A 42.0696(6) 21.3815(7)
al® 90 90
p° 90 90
/° 90 90
Volume/A® 20818.1(5) 10898.3(7)
4 16 8
F(000) 3712.0 1848.0
Goodness-of-fit on F~ 0.966 0.982

Final R indexes [I>=2c (I)] R; =0.0658, wR, =0.1480 R;=0.0671, wR, =0.1729
Final R indexes [all data] R;=0.1039, wR, =0.1646 R;=0.1281, wR, =0.2102

Flack parameter 0.504(18) -
CCDC 1887432 1945131
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Fig. S1 (a) The asymmetric structural unit in compound 1. (b) The deformed octahedral

environments representation of Ni**. (¢) The 3D framework of 1. (d) The simplified pzs topology of

1
S7. Characterization of there-prepared compounds

(a} (b)

Fig. S2 Images of as-synthesized compound 1 (a) and as-synthesized compound 2 (b).
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Fig. S3 The PXRD patterns of the simulated one from the single-crystal data (red), as-synthesized

compound 1 (black) and compound 2 (blue).
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Fig. $4 The PXRD patterns of compound 1 (a) and 2 (b) after immersing different common solvents

for 12 h.
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Fig. S5 The IR spectra of H,DCTP ligand (red), compound 1 (black) and compound 2 (blue).

The peaks from 3600 to 2800 cm™ belong to the stretching vibration of -OH in -COOH groups
and the stretching vibration of C-H in aromatic rings of the ligand. These peaks become broadened
and weakened in compounds, indicating that metal ions coordinate with the carboxyl groups and the
pyridine N atoms. The peaks of 1650~1500 cm™ and 1440~1370 cm™ are attributed to the stretching

vibration and bending vibration absorption of the C-O bond in the -COO group, respectively. The

C-H characteristic absorption zone of the pyridine ring is 850 ~ 630 cm.
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Fig. S6 The thermogravimetric analysis curves of compounds 1 (a) and 1a (b).
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Fig. S7 The thermogravimetric analysis curve of compound 2.

—— Simulated
1 exchanged with CH:Cl:
o | 5

_I.-A n._]_ A e,

l.lLln..l.l A
I T I T I T I T
10 20 30 40 50

20/degree

Fig. S8 The PXRD patterns of compound 1 exchanged with CH,Cl, (black) and then heated at
130 °C for one hour (1a, blue).

S9



S8. lodine adsor ption experiment
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Fig. S9 The thermogravimetric analyses curve of I,@1la.
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Fig. S10 Images of iodine adsorption process and iodine release process of compound la. After
adsorbing I,, the green 1a changed into dark brown to obtain [,@1a. When I,@1a were immersed in

a fresh CH;CN solution, the dark brown crystals changed in green and the CH3CN solution changed

from colorless to orange.
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Fig. S11 The UV-Vis spectra to monitor the adsorption process of 1a in cyclohexane solution of

iodine (1.25 mM) at room temperature.
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Fig. S12 The UV-Vis spectra to monitor the release process of L@la in fresh CH;CN solution in

one hour. The characteristic peaks of I, and I3 appear at 206, 291 and 361 nm.
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Fig. S13 The PXRD patterns of I,@1a (black), and recovered 1 after the release of iodine in CH;CN

(blue).

S9. Gas adsor ption experiment
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Fig. S14 The N, adsorption/desorption of 1a at 77 K. Inset: The adsorption average pore diameter.
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Table S2. Comparison of the CO, adsorption with some reported MOFs.

Surface area
(m’/g)’

CO; adsorption
(cm3/ 2)

Chemical formula Ref.
BET Langmuir 273K 298K
[Cu(Me-4py-trz-ia)] 1473 - 206.08 136.64 4
{[Zn(btz)]- DMF-0.5H,0}, 1151 1222 181.22 111.78 5
[Cuy(L3)], (NTU-113) 3095 - 166.8 - 6
[Cuy(bdeppi)], (SNU-50") 2300 2450 120 50 7
{INi(DCTP)]-6.5DMF}, 2525 3789 103.98  53.71 This
work
polylLs@MIL-101 2462 - 103 62 8
{[Sr(BDPO), 5(H,0)]-2H,0}, 621 694 98.1 68.3 9
[YDbs(u3-OH)s(DDPY),(H,0)6](NO5)-(solv), 1226 - 76.07 - 10
[Cu(bpy)-(EDS)], (TMOF-1) 256 - 47.1 324 11
[Niy(dobdc)], (Ni-M OF-74) 936 1356 - 160.11 12
[Cus(BTC),(H,0)3], (HKUST-1) 6922  917.6 - 72 13

“Based on N, adsorption at 77 K. *Based on Ar adsorption at 87 K.

S10. Catalytic experimentsfor the cycloaddition of CO, and aziridines

Table S3. Comparison of the catalytic activity of compound 1 with some reported MOFs-based

catalysts.
. Temp Pressure Time Co-cata Yield Recycled TOF
Chemical formula ) 1w Ref.
(°C)  (MPa) (h) lyst (%) times (h™)
{[Cuy(BCP)(H,0),]-3DMF}, 100 2 12 TBAB >99 Ten 0.83 1
{[C0y(XN),(IPA),]-2H,0}, 30 1 10 TBAB 89 Five 2.45 14
{[Zn(btz)]- DMF-0.5H,0}, 70 2 12 TBAB >99 Ten 2.97 15
TBAB/ b
{[Zn(H,0)(CsH;NO4)]-H,0},  rt. 1 24 00 94 - 4.89 16
2
{Cuy(CuTBCPPP)(H,0)4}, 100 2 10 TBAB  >99 Two 16" 17
. . . This
{[Ni(DCTP)]-6.5DMF}, 70 2 10 No 95 Five 32
work
“TOF: Turnover frequency represented the number of transformations at a single active site per hour.

b1-Methyl-2-phenylaziridine as substrate. 20 mmol Substrate, 0.05 mmol catalyst, 70 °C, 10 h, 2 MPa of CO,.
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Table $4. Control experiments of cycloaddition of CO, with aziridines.”

Et @] O

]

N i} OJLN—Et + O)LN-Et
/& Compound 1 Ph)_! {

Ph

Ph
1S 25 3S
Entry  Catalyst 1 (mg) Temp (°C) Yield (%)” Regio-sel®
1 45 30 60 97:3
2 45 50 85 99:1
3 45 60 87 99:1
4 45 70 95 98:2
5 45 80 89 98:2
6 45 100 88 98:2
7? 45 70 12 74:26
8° 45 70 18 85:15
9 45 70 81 95:5

“Reaction conditions: 1-Ethyl-2-phenylaziridine (2.0 mmol), solvent-free, compound 1 (45 mg based on metal
center, about 2.4 mol%), CO, (2.0 MPa), 10 h. bUsing 1,3,5-trimethoxybenzene as an internal standard to
determine the total yield of the products 2S and 3S by 'H NMR. “The molar ratio of 2S to 3S. “CO, (0.1 MPa,
10 h). “CO, (0.1 MPa, 72 h).”CO, (1 MPa, 10 h). The above experiments were repeated twice.

To explore the optimum reaction conditions, 1-ethyl-2-phenylaziridine was selected as the model
substrate to investigate under various conditions (Table S4). 45 mg compound 1 and 2 mmol
1-ethyl-2-phenylaziridine were sealed in an autoclave without additional solvent and co-catalyst at
different temperatures (entries 1-6). With the rise of temperature, the yields of
3-ethyl-5-phenyloxazolidin-2-one (2S) and 3-ethyl-4-phenyloxazolidin-2-one (3S) were significantly
increased. However, higher temperature caused the yield to decrease a little owing to the
self-polymerization of partial substrates. Hence, the reaction was carried out at 70 °C. The pressure
was also investigated. Under 0.1 MPa of CO; at 70 °C for 10 h, 1 displayed low catalytic activity.
After extending reaction time to 72 h, the yields of 2S and 3S increased slightly. Further increasing
the pressure to 1 MPa, the yield of product was 81%. When the pressure of CO, reached 2 MPa, the
catalytic efficiency increased to 95% (entries 7-9). So, we chose the optimal condition was 70 °C and

2 MPa of CO; for 10 h without any solvent and co-catalyst.
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Fig. S15 The consistent PXRD patterns of 1 with the simulated data after five cycles.

Table Sb5. The ICP results of compound 1 after recyclable recyclings and mass loss percent.

Compound 1 Ni
Filter liquor after fifth catalytic recyclings (ppm) 1.84
Mass loss percent (%) 1.8
100
®-@
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Fig. S16 Catalytic filtration experiments for the cycloaddition reaction of CO, and aziridines.
Reaction conditions: 45 mg compound 1 and 2 mmol 1-ethyl-2-phenylaziridine were sealed in an
autoclave at 70 °C and 2 MPa CO, for different times. The yields were analyzed by 'H NMR with

1,3,5-trimethoxybenzene as an internal standard.
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In a typical experiment, catalyst 1 and 1-ethyl-2-phenylaziridine (substrate) were sealed in an
autoclave | without additional co-catalyst. The mixture was stirred at 70 °C and 2 MPa CO,, and the
products were determined by 'H NMR. (O After 5 hours of reaction, the catalyst 1 was isolated
from | by centrifugation and placed in another new reactor Il. At the same time, fresh
1-ethyl-2-phenylaziridine was added into 11 and reacted for 5 hours. @ The filtrate in | was stirred
for an additional 5 hours under optimal reaction conditions. All of these processes were analyzed by
'"H NMR and the experimental results were shown in Figure S15. In autoclave |, the substrate
1-ethyl-2-phenylaziridine could quickly convert into corresponding oxazolidinones, while the yield
of product hardly increased after isolating catalyst 1. Meanwhile, the separated catalyst 1 in
autoclave |l still exhibited effective catalytic ability for this cycloaddition. The results mentioned
above demonstrated compound 1 could serve as an efficient heterogeneous catalyst for the

cycloaddition reaction of CO; and aziridines.

Synthesized MOF-74(Co)

Simulated MOF-74(Co)

| A A A A M

-.—‘-;i" .i..l_ Y FUPTE SR WO PRU

Synthesized MOF-T4(Ni)

Simulated MOF-74(Ni)

10 20 30 40
2@ degree

Fig. S17 The 3D framework MOF-74(Ni), and the PXRD patterns of MOF-74(Ni) (red) and

MOF-74-(Co) (rosy)."
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Fig. S18 The 3D framework with 1D square channels in [Ni(pybz),] and its PXRD patterns.'®
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Fig. S19 'H NMR spectral to monitor the entire cycloaddition reaction of CO, and
1-ethyl-2-phenylaziridine by compound 1 for different times (in CDCl;). Reaction conditions: 45 mg
compound 1 and 2 mmol 1-ethyl-2-phenylaziridine were sealed in an autoclave at 70 °C and 2 MPa

CO, for different times.

As the reaction proceeds, 1-ethyl-2-phenylaziridine (substrate) reacted with CO, to produce the
major product 3-ethyl-5-phenyloxazolidin-2-one, whose characteristic proton signals appeared at 6 =
5.48 ppm and gradually enhanced. At the same time, the proton signals of 1-ethyl-2-phenylaziridine
at & = 2.29 and 1.89/1.65 ppm decreased and further disappeared. All these results indicate

compound 1 can effectively promote the cycloaddition of CO; and aziridines without co-catalyst.
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Fig. S20 IR spectra for monitoring this cycloaddition reaction of CO, and 1-ethyl-2-phenylaziridine
by compound 1 at different times. Reaction conditions: 45 mg compound 1 and 2 mmol

1-ethyl-2-phenylaziridine were heated at 70 °C and 2 MPa CO,.

The stretching vibration peaks of -CH groups at 2983 and 2965 cm™ gradually became weak with
the reaction time increasing, which indicated compound 1 could activate the substrate and promote
the cycloaddition reaction. Meanwhile, the new characteristic peaks of product appeared at 1753 and

1678 cm™ and gradually enhanced, belonging to the C=0 bond of oxazolidinones.
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S11. *H NMR spectral for re-prepared aziridines and oxazolidinones

The "H NMR spectral for aziridines.
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1-1sopropyl-2-phenylaziridine
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1-Pentyl-2-phenylaziridine
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Ethyl-2-p-tolylaziridine
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The "H NMR and "*C NMR spectral for oxazolidinones.

3-Ethyl-5-phenyloxazolidin-2-one
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3-Phenyl-5-propyloxazolidin-2-one
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3-Butyl-5-phenyloxazolidin-2-one
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3-Pentyl-5-phenyloxazolidin-2-one
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3-Hexyl-5-phenyloxazolidin-2-one
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Ethyl-5-p-tolyloxazolidin-2-one
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Ethyl-5-(4-chlor ophenyl)oxazolidin-2-one
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