# **Supporting Information**

# Palladium-catalyzed asymmetric carbamoyl-carbonylation of alkenes

Ziwen Feng, Qiuyu Li, Long Chen, Hequan Yao\*, and Aijun Lin\*
State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry,

China Pharmaceutical University, Nanjing 210009, P. R. China.

Nanjing, 210009, P. R. China.

E-mail: ajlin@cpu.edu.cn; hyao@cpu.edu.cn

| 1.         | General Information                                                              | S1         |
|------------|----------------------------------------------------------------------------------|------------|
| 2.         | Procedures for the Synthesis of Substrates 1 and Substrates 6                    | S2         |
| <i>3</i> . | General Procedure for the Palladium-Catalyzed Asymmetric Carbamoyl-Carbonylat    | ion of     |
| Ac         | ctivated Alkenes                                                                 | S7         |
| 4.         | Optimization of Reaction Parameters for the Palladium-Catalyzed Asymmetric Carba | ımoyl-     |
| Ca         | arbonylation of Unactivated Alkenes                                              | <i>S38</i> |
| <i>5</i> . | General Procedure for the Palladium-Catalyzed Asymmetric Carbamoyl-Carbonylat    | ion of     |
| Un         | nactivated Alkenes                                                               | S41        |
| 6.         | Further Study of the Reaction                                                    | S53        |
| <i>7</i> . | Crystal Structure of 3a and 7d                                                   | S65        |
| 8.         | References                                                                       | S67        |
| 9.         | NMR Spectra                                                                      |            |

#### 1. General Information

<sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were collected on a 300 or 400 MHz spectrometer using CDCl<sub>3</sub> and DMSO- $d_6$  as solvent. Chemical shifts of <sup>1</sup>H NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane ( $\delta = 0.00$  ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sext = sextet, hept = heptet, m = multiplet), coupling constant (Hz), and integration. High Resolution Mass measurement was performed with Electron Spray Ionization (ESI) method on a Q-TOF mass spectrometer operating in positive-ion mode. Melting point (m.p.) was measured on a microscopic melting point apparatus. Optical rotations were measured on an automatic polarimeter with  $[\alpha]_D^{20}$  values reported in degrees. PE refers to petroleum ether (b.p. 60–90 °C) and EA refers to ethyl acetate. Flash column chromatography was carried out using commercially available 200–300 mesh under pressure unless otherwise indicated. Gradient flash chromatography was conducted eluting with PE/EA. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated.

## 2. Procedures for the Synthesis of Substrates 1 and Substrates 6

Carbamoyl chlorides 1a-1s were synthesized according to the reported methods.<sup>[1-2]</sup>

Figure S1. Structures of Substrates 1

#### **Preparation of Substrates 1**

#### **General Procedure 1**

To a solution of methyl triphenylphosphonium bromide (2 equiv) in THF (0.3 M), was added slowly potassium *tert*-butoxide (2 equiv) at 0 °C. The suspension turned yellow upon addition of the base. The suspension was warmed to room temperature and stirred for 30 min. The 2-aminobenzophenone (10 mmol) was added in THF (10 mL). The reaction was stirred until the consumption of starting material monitored by TLC (2 h). The completion the reaction was diluted with 200 mL PE and filtered over a silica plug eluting with mixtures of EA and PE. The crude styrene was concentrated under reduced pressure and used with no further purification assuming full conversion.

The 2-aminostyrene was dissolved in THF (0.3 M) and cooled to -78 °C. Then *n*-butyl lithium (1.1 equiv, 2.5 M in hexane) was added dropwise. The reaction was warmed slowly to -45 °C and stirred for 30 min. Then the reaction was cooled to -78 °C. The iodomethane (1.1 equiv) was added and the reaction was warmed to room temperature and stirred overnight. The reaction was quenched with H<sub>2</sub>O then diluted with ethyl acetate. The organic layer was separated, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure to give the methylated amine. The methylated amine was purified with flash column chromatography.

The methylated amine was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (0.3 M) and cooled to 0 °C. Then pyridine (2 equiv) was added followed by triphosgene (0.5 equiv). The reaction was warmed to room temperature and stirred until the completion indicated by TLC. The reaction was quenched with 1 N HCl and extracted twice with CH<sub>2</sub>Cl<sub>2</sub>. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude starting materials were purified by flash column chromatography.

#### **General Procedure 2**

2-Fluorobenzonitrile (10 mmol) was dissolved in MeCN (0.3 M) equipped with a magnetic stir bar, and then methylamine (15 equiv, 40% wt. in  $H_2O$ ) was added. The reaction was stirred at 85 °C (oil bath temperature) for 12 h. After cooling to room temperature, the reaction was diluted with EA and washed twice with water. The organic layer was dried over  $Na_2SO_4$ , filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography.

The *N*-methyl aniline was dissolved in THF (0.3 M). Then Grignard reagent (3 equiv) was added slowly. The reaction was stirred at 80 °C (oil bath temperature) for 6 h. After cooling to 0 °C, the reaction was quenched slowly with 1M aq. HCl. The imine hydrolysis was stirred at room temperature for 1 h. In some cases the imine hydrolysis required refluxing 4M HCl in EtOH overnight to convert to the corresponding ketone. The reaction was quenched with NaHCO<sub>3</sub>, and then diluted with EA. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography.

The aniline was carried forward following **General Procedure 1** to obtain the carbmoyl chlorides.

Carbamoyl chlorides **6a-6f** were synthesized according to the reported methods.<sup>[3-4]</sup>

Figure S2. Structures of Substrate 6

#### **Preparation of Substrates 6**

#### **General Procedure**

A 100 mL bottle was subsequently charged with 10 mmol aromatic amines, 10 mmol 4-hydroxybutan-2-one, 10 mol %  $I_2$  (254 mg), 20 mL DMSO. The resulting mixture was performed at room temperature until complete consumption of the starting material as monitored by TLC. After reaction was complete, the resulting mixture was poured into water (200 mL). If the desired products were isolated as solids from aqueous solutions, which were treated through vacuum filtering, washing with water and vacuum drying. If no solid precipitated, the aqueous solutions were extracted with EA (100 mL×3). The combined organic extracts were washed with brine (50 mL×3), then dried over  $Na_2SO_4$  and concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (EA/PE = 1/20-1/4) to afford the desired products.

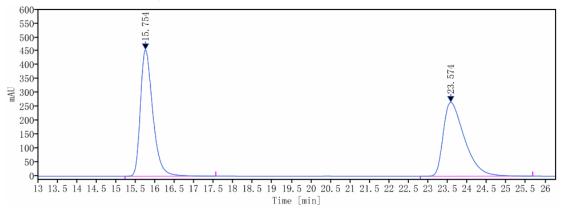
To a solution of methyl triphenylphosphonium bromide (2 equiv) in THF (0.3 M), was added slowly potassium *tert*-butoxide (2 equiv) at 0 °C. The suspension turned yellow upon addition of the base. The suspension was warmed to room temperature and stirred for 30 min. The  $\beta$ -aminoketones (10 mmol) was added in THF (10 mL). The reaction was stirred until the consumption of the starting material observed by TLC (2 h). The completion of the reaction was diluted with 200 mL of PE and filtered over a silica plug eluting with mixtures of EA and PE. The crude styrene was concentrated under reduced pressure and used with no further purification assuming full conversion.

The styrene was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (0.3 M) and cooled to 0 °C. Then pyridine (2 equiv) was added followed by triphosgene (0.5 equiv). The reaction was warmed to room temperature and stirred until completion indicated by TLC. The reaction was quenched with 1 N HCl and extracted twice with CH<sub>2</sub>Cl<sub>2</sub>. The organic layers were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude starting materials were purified by flash column chromatography to obtain **6**.

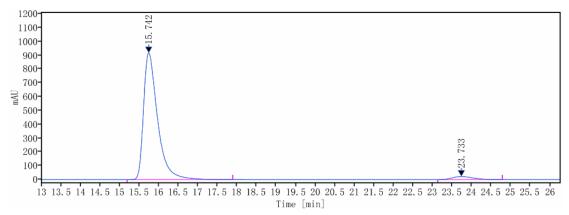
# 3. General Procedure for the Palladium-Catalyzed Asymmetric Carbamoyl-Carbonylation of Activated Alkenes

An oven-dried 10 mL Schlenk tube was charged with substrate 1a (27.2 mg, 0.1 mmol), Pd(OAc)<sub>2</sub> (1.1 mg, 5 mol %), L1 (5.8 mg, 10 mol %), and K<sub>2</sub>HPO<sub>4</sub> (52.3 mg, 0.3 mmol). The vial was thoroughly flushed with CO, and MeOH (12  $\mu$ L, 0.3 mmol), as well as PhCl/acetone (9/1, 1.0 mL) was added under balloon pressure of CO. Then the reaction mixture was stirred at room temperature for 5 min, and then raised to 80 °C (oil bath temperature) for 30 h with stirring. After the reaction vessel was cooled to room temperature, the reaction mixture was diluted with EA (10 mL) and filtered through a plug of celite. When some alcohols with high boiling point were used, the reaction mixture required Dess-Martin periodinane (254.5 mg, 0.6 mmol) in DCM (2 mL) at room temperature for 2 h. The reaction was filtered, and concentrated under reduced pressure. The solution was purified by flash column chromatography on silica gel (PE/EA = 5/1) to afford the desired product 3a in 95% yield (28.2 mg).

#### methyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3a)

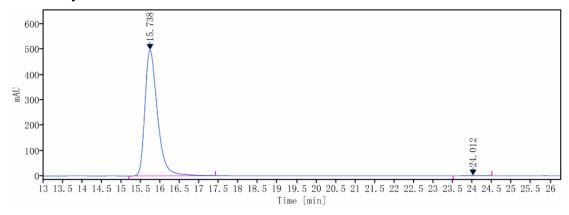

95% yield (28.2 mg); 96.5:3.5 er; White solid; m.p. 63 – 65 °C;  $R_f = 0.5$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -97$  (c = 0.2, EA).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.21 (m, 7H), 7.10 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 3.55 (d, J = 16.3 Hz, 1H), 3.43 (s, 3H), 3.27 (d, J = 16.3 Hz, 1H), 3.23 (s, 3H) ppm.


<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 178.1, 170.1, 144.6, 139.1, 131.1, 128.7, 127.7, 126.6, 124.5, 122.5, 108.5, 53.2, 51.7, 41.8, 26.7 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{18}H_{17}NO_3+H]^+$  296.1287, found 296.1281.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 15.7 min (major),  $t_{R2}$  = 23.7 min (minor).




| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 50.0049  | 454.8237    | 10046. 2442 | 0. 3377    | 15.754 BM m       |
| 49. 9951 | 265. 8242   | 10044. 2724 | 0. 5748    | 23.574 BM m       |



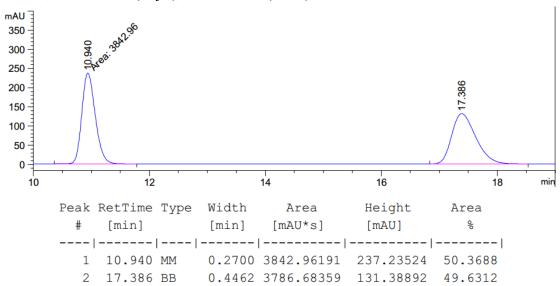
| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 96. 5855 | 918. 1440   | 22799. 0974 | 0.3737     | 15.742 BM m       |
| 3.4145   | 22. 2074    | 805. 9912   | 0. 5564    | 23.733 MM m       |

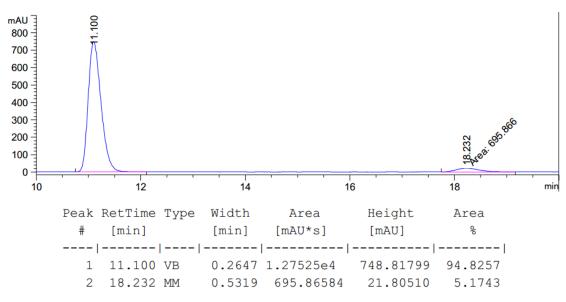
## After recrystallization



| Area%   | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|---------|-------------|-------------|--------------------|-------------------|
| 99.8818 | 495. 8755   | 11027. 2640 | 0.3394             | 15.738 BM m       |
| 0.1182  | 0.4153      | 13. 0451    | 0.3725             | 24.012 MM m       |

#### methyl (S)-2-(4-chloro-1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3b)


90% yield (29.8 mg); 95:5 er; White solid; m.p. 115 – 117 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -136$  (c = 0.24, EA).


<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 – 7.20 (m, 6H), 7.03 (d, J = 8.2 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.76 (dd, J = 25.2 Hz, 16.4 Hz, 2H), 3.48 (s, 3H), 3.23 (s, 3H) ppm.

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 177.5, 170.4, 146.7, 136.7, 131.0, 130.1, 128.8, 128.2, 127.9, 126.4, 123.6, 106.9, 54.3, 51.8, 38.8, 27.0 ppm.

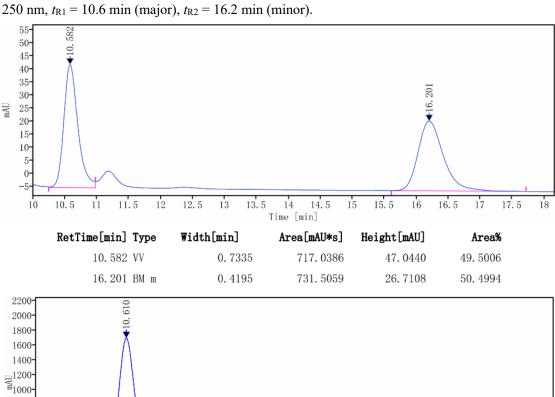
**HRMS** (ESI-TOF) calcd for  $[C_{18}H_{16}CINO_3+H]^+$  330.0897, found 330.0894.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 11.1 min (major),  $t_{R2}$  = 18.2 min (minor).





#### methyl (S)-2-(4-methoxy-1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3c)


92% yield (29.9 mg); 96:4 er; White solid; m.p. 167 - 169 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -168$  (c = 0.18, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 – 7.20 (m, 6H), 6.66 (d, J = 8.5 Hz, 1H), 6.57 (d, J = 7.8 Hz, 1H), 3.75 (s, 3H), 3.64 – 3.53 (dd, J = 17.3 Hz, 16.3 Hz, 2H), 3.44 (s, 3H), 3.20 (s, 3H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.5, 170.8, 156.0, 145.9, 138.3, 130.2, 128.5, 127.6, 126.6, 116.6, 106.1, 101.8, 55.5, 53.4, 51.6, 39.9, 26.9 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{19}H_{19}NO_4+H]^+$  326.1392, found 326.1387.

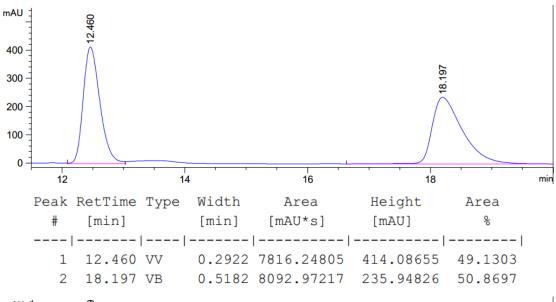
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 10.6 min (major),  $t_{R2}$  = 16.2 min (minor).

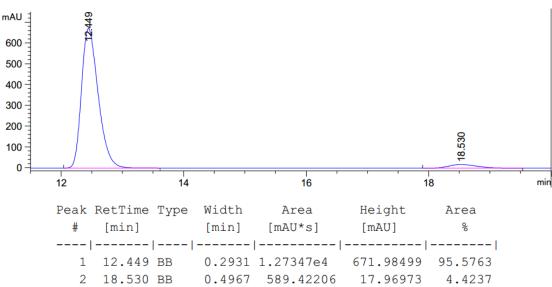


| 1800-          |     |    | ₹     |    |      |    |      |    |         |     |       |    |       |     |       |    |      |    |
|----------------|-----|----|-------|----|------|----|------|----|---------|-----|-------|----|-------|-----|-------|----|------|----|
| 1600-          |     |    | Λ     |    |      |    |      |    |         |     |       |    |       |     |       |    |      |    |
| 1400-          |     |    | -1    |    |      |    |      |    |         |     |       |    |       |     |       |    |      |    |
| <u>⇒</u> 1200- |     |    | -1    |    |      |    |      |    |         |     |       |    |       |     |       |    |      |    |
| ¥1200-         |     |    |       |    |      |    |      |    |         |     |       |    |       |     |       |    |      |    |
| 800-           |     |    |       | \  |      |    |      |    |         |     |       |    |       |     |       |    |      |    |
| 600-           |     |    |       | 1  |      |    |      |    |         |     |       |    |       | c   | 0     |    |      |    |
| 400-           |     |    |       | \  |      |    |      |    |         |     |       |    |       | 903 | 07    |    |      |    |
| 200-           |     |    |       |    |      |    |      |    |         |     |       |    |       | 9   | 0     |    |      |    |
| 0-             | _   |    | /     |    |      |    |      |    |         |     |       |    |       |     |       |    |      |    |
| 9              | 9.5 | 10 | 10. 5 | 11 | 11.5 | 12 | 12.5 | 13 | 13. 5   | 14  | 14. 5 | 15 | 15. 5 | 16  | 16. 5 | 17 | 17.5 | 18 |
|                |     |    |       |    |      |    |      | ,  | Time [m | in] |       |    |       |     |       |    |      |    |
|                |     |    |       |    |      |    |      |    |         |     |       |    |       |     |       |    |      |    |

| Area%    | <pre>Height[mAU]</pre> | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|------------------------|-------------|------------|-------------------|
| 95. 9442 | 1700. 6856             | 37839. 4272 | 0. 3326    | 10.610 BM m       |
| 4.0558   | 54, 3246               | 1599, 5467  | 0.4515     | 16.203 MM m       |

#### methyl (S)-2-(5-chloro-1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3d)


98% yield (32.2 mg); 95.5:4.5 er; White solid; m.p. 88 – 90 °C;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -127$  (c = 0.14, EA).


<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.34 – 7.26 (m, 7H), 6.84 (d, J = 8.3 Hz, 1H), 3.58 – 3.50 (m, 4H), 3.29 – 3.24 (m, 4H) ppm.

<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 177.7, 170.0, 143.3, 138.3, 133.0, 128.9, 128.7, 127.9, 127.8, 126.5, 124.8, 109.4, 53.4, 51.9, 41.5, 26.8 ppm.

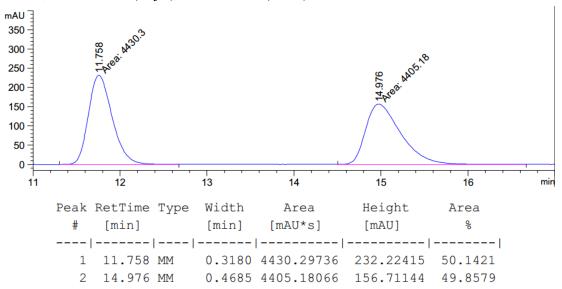
**HRMS** (ESI-TOF) calcd for  $[C_{18}H_{16}CINO_3+H]^+$  330.0897, found 330.0895.

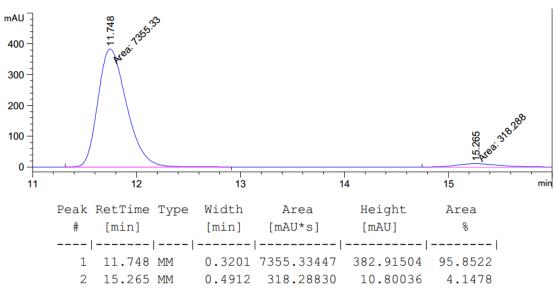
**HPLC**: Daicel Chiralcel OD-H, n-hexane/isopropanol 70/30, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 12.4 min (major),  $t_{R2}$  = 18.5 min (minor).





#### methyl (S)-2-(5-methoxy-1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3e)


97% yield (31.4 mg); 96:4 er; White solid; m.p. 118 - 120 °C;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -129$  (c = 0.16, EA).


<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.33 – 7.22 (m, 5H), 6.91 – 6.81 (m, 3H), 3.79 (s, 3H), 3.54 (d, J = 16 Hz, 1H), 3.46 (s, 3H), 3.25 (d, J = 16 Hz, 1H), 3.22 (s, 3H) ppm.

<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 177.8, 170.1, 155.9, 139.0, 138.2, 132.5, 128.7, 127.7, 126.6, 112.6, 112.2, 108.7, 55.8, 53.6, 51.8, 41.6, 26.8 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{19}H_{19}NO_4+H]^+$  326.1392, found 326.1389.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 11.7 min (major),  $t_{R2}$  = 15.3 min (minor).



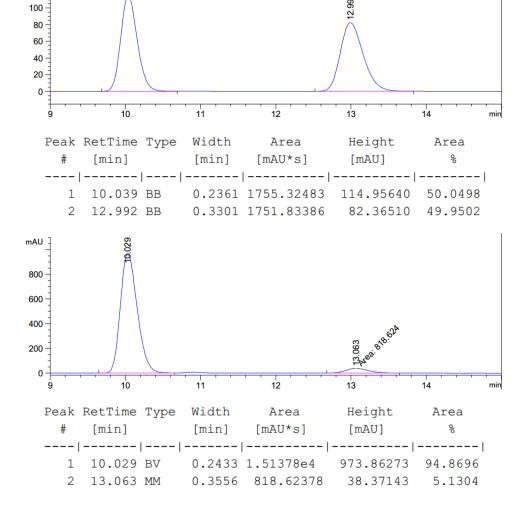


$$F_3C$$
 $N$ 
 $Me$ 

#### methyl (S)-2-(1-methyl-2-oxo-3-phenyl-6-(trifluoromethyl)indolin-3-yl)acetate (3f)

91% yield (33.2 mg); 95:5 er; White solid; m.p. 102 - 105 °C;  $R_f = 0.5$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -68$  (c = 0.24, EA).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (s, 2H), 7.29 – 7.26 (m, 5H), 7.13 (s, 1H), 3.59 (d, J = 16.7 Hz, 1H), 3.48 (s, 3H), 3.32 (d, J = 16.7 Hz, 1H), 3.28 (s, 3H) ppm.


<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  177.8, 170.0, 145.3, 138.1, 135.2, 131.1 (q, J = 32.6 Hz), 128.9, 128.0, 126.4, 124.5, 122.7 (q, J = 278.9 Hz), 119.5 (q, J = 4.1 Hz), 105.19 (q, J = 3.8 Hz), 53.2, 51.9, 41.6, 26.8 ppm.

<sup>19</sup>**F NMR** (282 MHz, CDCl<sub>3</sub>)  $\delta$  -62.40 ppm.

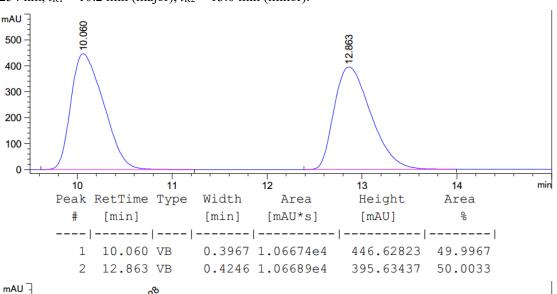
mAU \_

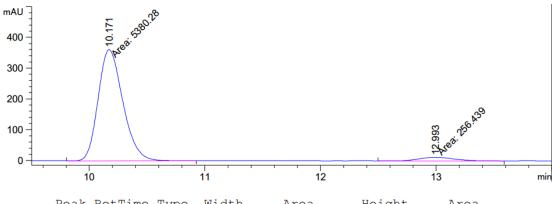
**HRMS** (ESI-TOF) calcd for  $[C_{19}H_{16}F_3NO_3+H]^+$  364.1161, found 364.1157.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 10.0 min (major),  $t_{R2}$  = 13.1 min (minor).



#### methyl (S)-2-(1,6-dimethyl-2-oxo-3-phenylindolin-3-yl)acetate (3g)


99% yield (30.6 mg); 95.5:4.5 er; White solid; m.p. 128 - 130 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -86$  (c = 0.14, EA).


<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.15 (m, 6H), 6.91 (dd, J = 7.5, 0.8 Hz, 1H), 6.74 (s, 1H), 3.53 (d, J = 16.3 Hz, 1H), 3.45 (s, 3H), 3.27 – 3.22 (m, 4H), 2.41 (s,3H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.3, 170.2, 144.6, 139.3, 138.8, 128.7, 128.0, 127.6, 126.6, 124.2, 123.0, 109.4, 53.0, 51.7, 41.8, 26.7, 21.9 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{19}H_{19}NO_3+H]^+$  310.1443, found 310.1439.

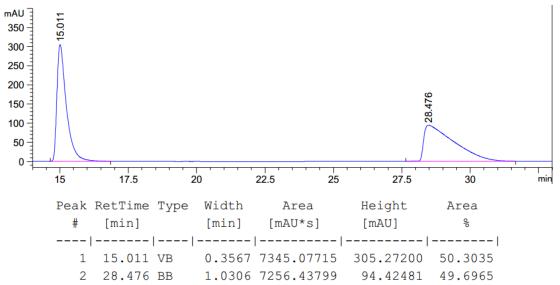
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 10.2 min (major),  $t_{R2}$  = 13.0 min (minor).

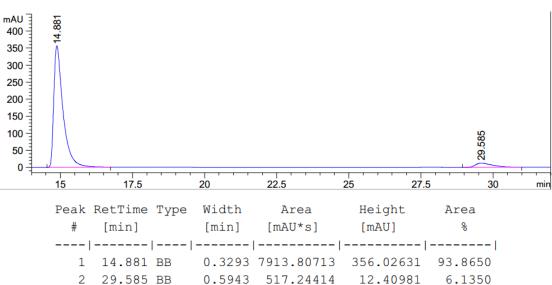




| reak | Retiine | туре | width  | Area       | нетдис    | Area    |  |
|------|---------|------|--------|------------|-----------|---------|--|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | 8       |  |
|      |         |      |        |            |           |         |  |
| 1    | 10.171  | MM   | 0.2482 | 5380.28467 | 361.33466 | 95.4506 |  |
| 2    | 12.993  | MM   | 0.3606 | 256.43921  | 11.85376  | 4.5494  |  |

#### methyl (S)-2-(5,6-dimethoxy-1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3h)


97% yield (34.5 mg); 94:6 er; White solid; m.p. 142 - 144 °C;  $R_f = 0.3$  (PE/EA = 1/1);  $[\alpha]_D^{20} = -95$  (c = 0.14, EA).


<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 – 7.24 (m, 5H), 6.92 (s, 1H), 6.56 (s, 1H), 3.96 (s, 3H), 3.85 (s, 3H), 3.52 (d, J = 16.2 Hz, 1H), 3.48 (s, 1H), 3.28 – 3.23 (m, 4H) ppm.

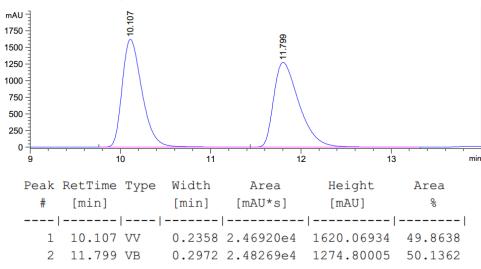
<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.3, 170.3, 149.9, 145.0, 139.4, 138.5, 128.7, 127.6, 126.6, 121.5, 109.7, 94.3, 56.9, 56.3, 53.5, 51.8, 41.6, 26.8 ppm.

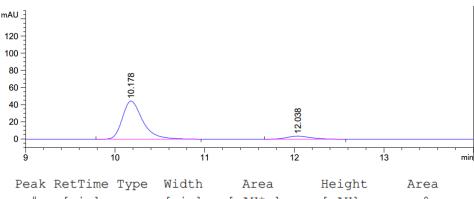
**HRMS** (ESI-TOF) calcd for  $[C_{20}H_{21}NO_5+H]^+$  356.1498, found 356.1491.

**HPLC**: Daicel Chiralcel OD-H, n-hexane/isopropanol 70/30, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 14.9 min (major),  $t_{R2}$  = 29.6 min (minor).






methyl (S)-2-(1-methyl-2-oxo-3-phenyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-3-yl)acetate (3i) 91% yield (26.9 mg); 91.5:8.5 er; White solid; m.p. 108 - 110 °C;  $R_f = 0.5$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -85$  (c = 0.12, EA).


<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 8.26 (dd, J = 5.3, 1.6 Hz, 1H), 7.60 (dd, J = 7.3, 1.6 Hz, 1H), 7.35 – 7.27 (m, 5H), 7.02 (dd, J = 7.3, 5.3 Hz, 1H), 3.54 – 3.49 (m, 4H), 3.33 – 3.28 (m, 4H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.6, 169.9, 157.9, 147.5, 137.8, 132.0, 128.9, 128.0, 126.5, 125.8, 118.0, 52.9, 51.9, 41.6, 25.8 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{17}H_{16}N_2O_3+H]^+$  297.1239, found 297.1233.

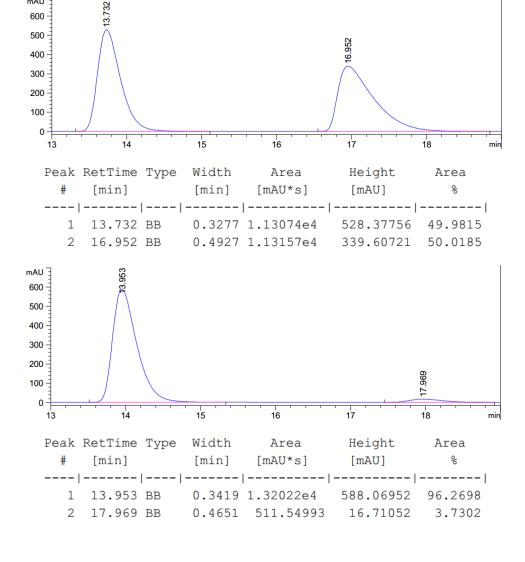
**HPLC**: Daicel Chiralcel OD-H, n-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 10.2 min (major),  $t_{R2}$  = 12.0 min (minor).





| reak | Recrime | Type | WIGCII | Alea      | петдис   | ALEa    |  |
|------|---------|------|--------|-----------|----------|---------|--|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]    | ્રે     |  |
|      |         |      |        |           |          |         |  |
| 1    | 10.178  | BB   | 0.2396 | 699.45471 | 44.45330 | 91.4154 |  |
| 2    | 12.038  | BB   | 0.2860 | 65.68451  | 3.48373  | 8.5846  |  |

#### methyl (S)-2-(1-methyl-2-oxo-3-(p-tolyl)indolin-3-yl)acetate (3j)


96% yield (29.7 mg); 96.5:3.5 er; Colorless oil;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -126$  (c = 0.11, EA). **1H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (td, J = 7.7, 1.3 Hz, 1H), 7.26 (t, 1H), 7.21 – 7.19 (m, 2H), 7.11 – 7.07 (m, 3H), 6.90 (d, J = 7.8 Hz, 1H), 3.53 (d, J = 16.3 Hz, 1H), 3.43 (s, 3H), 3.27 – 3.22 (m, 4H), 2.28 (s, 3H) ppm.

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 178.2, 170.2, 144.6, 137.4, 136.1, 131.3, 129.4, 128.6, 126.5, 124.4, 122.5, 108.4, 53.0, 51.7, 41.8, 26.7, 21.0 ppm.

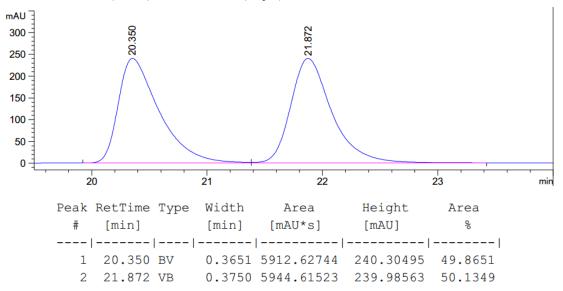
**HRMS** (ESI-TOF) calcd for  $[C_{19}H_{19}NO_3+H]^+$  310.1443, found 310.1439.

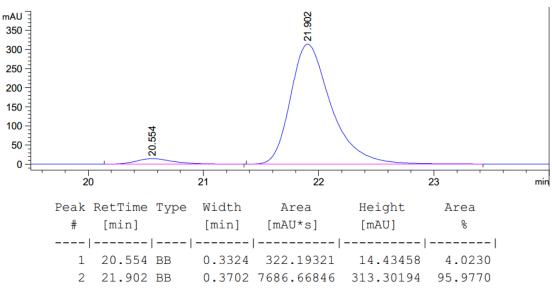
mAU

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 14.0 min (major),  $t_{R2}$  = 18.0 min (minor).



#### methyl (S)-2-(3-(3-methoxyphenyl)-1-methyl-2-oxoindolin-3-yl)acetate (3k)


97% yield (31.7 mg); 96:4 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -78$  (c = 0.2, EA).


<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.25 (m, 2H), 7.20 (td, J = 8.0, 1.6 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.93 – 6.89 (m, 3H), 6.78 (d, J = 8.3 Hz, 1H), 3.74 (s, 3H), 3.53 (d, J = 16.4 Hz, 1H), 3.43 (s, 3H), 3.28 – 3.23 (m, 4H) ppm.

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 177.9, 170.1, 159.7, 144.6, 140.6, 131.0, 129.6, 128.7, 124.5, 122.5, 119.0, 113.2, 112.5, 108.4, 55.2, 53.2, 51.7, 41.8, 26.7 ppm.

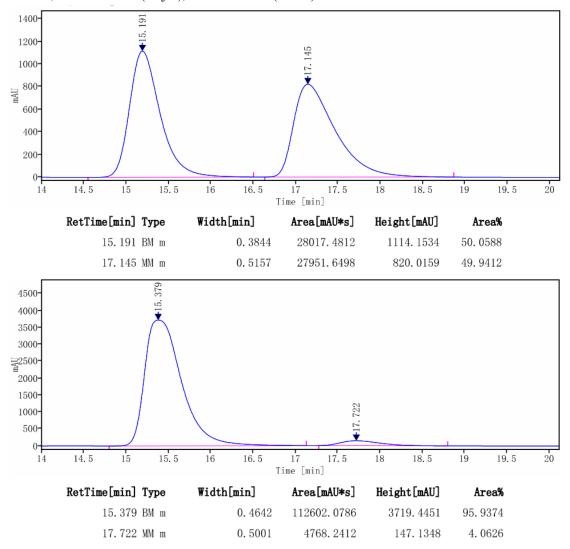
**HRMS** (ESI-TOF) calcd for  $[C_{19}H_{19}NO_4+H]^+$  326.1392, found 326.1389.

**HPLC**: Daicel Chiralcel IA-3, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 20.6 min (minor),  $t_{R2}$  = 21.9 min (major).





#### methyl (S)-2-(1-methyl-3-(naphthalen-1-yl)-2-oxoindolin-3-yl)acetate (3l)


94% yield (32.5 mg); 96:4 er; White solid; m.p. 99 – 101 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -60$  (c = 0.22, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.78 – 7.69 (m, 4H), 7.51 (dd, J = 8.7, 2.0 Hz, 1H), 7.45 – 7.32 (m, 4H), 7.13 (t, J = 7.5 Hz, 1H), 6.94 (d, J = 7.7 Hz, 1H), 3.68 (d, J = 16.3 Hz, 1H), 3.46 (s, 3H), 3.37 (d, J = 16.4 Hz, 1H), 3.26 (s, 3H) ppm.

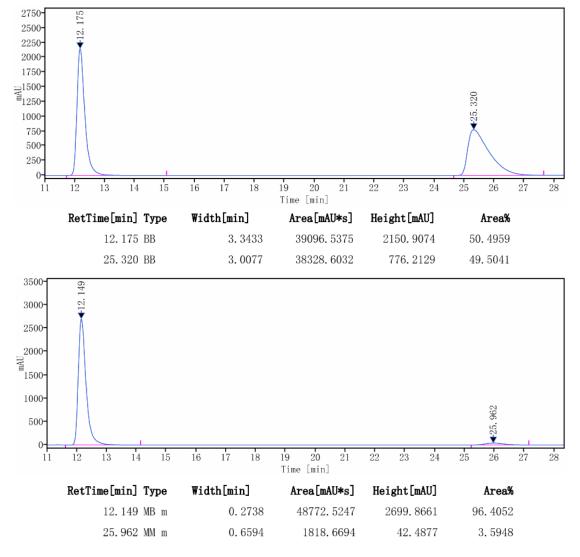
<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.9, 170.1, 144.5, 136.3, 133.0, 132.5, 131.0, 128.7, 128.5, 128.1, 127.4, 126.2, 126.2, 125.5, 124.4, 122.5, 108.5, 53.3, 51.7, 41.6, 26.7 ppm.

**HRMS** (ESI-TOF) calcd for [C<sub>22</sub>H<sub>19</sub>NO<sub>3</sub>+H]<sup>+</sup> 346.1443, found 346.1439.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 15.4 min (major),  $t_{R2}$  = 17.7 min (minor).



#### methyl (S)-2-(1-methyl-2-oxo-3-(thiophen-2-yl)indolin-3-yl)acetate (3m)


98% yield (29.6 mg); 96.5:3.5 er; White solid; m.p. 55 – 57 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -127$  (c = 0.29, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.34 (m, 2H), 7.20 (d, J = 4.7 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.92 – 6.90 (m, 3H), 3.55(d, J = 16.6 Hz, 1H), 3.46 (s, 3H), 3.32 – 3.25 (m, 4H) ppm.

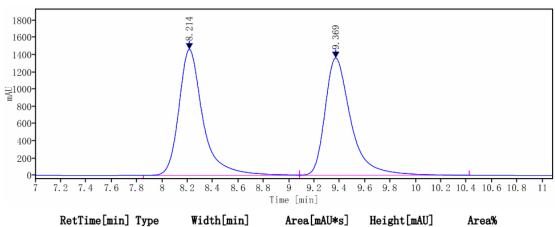
<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 176.9, 169.6, 144.3, 142.8, 130.9, 129.2, 126.9, 125.4, 125.2, 124.0, 122.6, 108.6, 51.8, 51.1, 43.0, 26.8 ppm.

**HRMS** (ESI-TOF) calcd for [C<sub>16</sub>H<sub>15</sub>NO<sub>3</sub>S+H]<sup>+</sup> 302.0851, found 302.0842.

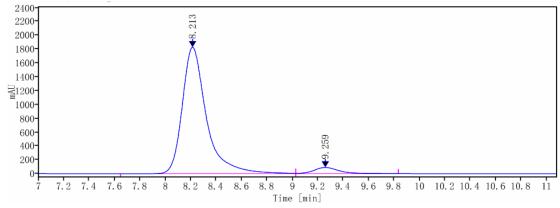
**HPLC**: Daicel Chiralcel OD-H, n-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 12.1 min (major),  $t_{R2}$  = 26.0 min (minor).



#### methyl (S)-2-(3-cyclohexyl-1-methyl-2-oxoindolin-3-yl)acetate (3n)


95% yield (28.6 mg); 95:5 er; White solid; m.p. 76 - 78 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -52$  (c = 0.19, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 – 7.24 (m, 1H), 7.14 (d, J = 7.1 Hz, 1H), 7.01 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 3.39 (s, 3H), 3.23 (s, 3H), 3.01 (s, 2H), 1.83 – 1.50 (m, 6H), 1.20 – 0.97 (m, 4H), 0.80 (qd, J = 12.4, 3.5 Hz, 1H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 179.5, 170.8, 144.9, 130.6, 128.1, 123.2, 121.9, 107.7, 53.7, 53.1, 51.5, 45.4, 38.9, 27.1, 26.7, 26.6, 26.3, 26.1 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{18}H_{23}NO_3+H]^+$  302.1756, found 302.1747.

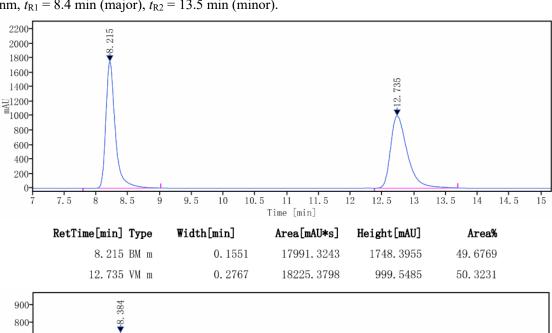
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 8.2 min (major),  $t_{R2}$  = 9.3 min (minor).

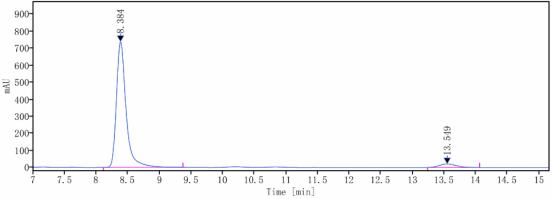


| RetTime[min] Type | Width[min] | Area[mAU*s] | <pre>Height[mAU]</pre> | Area%    |
|-------------------|------------|-------------|------------------------|----------|
| 8.214 VM m        | 0.1973     | 19356.6641  | 1463.8103              | 50.0405  |
| 9.369 MM m        | 0. 2134    | 19325. 3011 | 1363. 3368             | 49. 9595 |



| Area%   | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|---------|-------------|-------------|------------|-------------------|
| 95.0284 | 1828. 9191  | 24208. 3359 | 0. 1984    | 8.213 BM m        |
| 4.9716  | 90. 2888    | 1266. 4989  | 0.2107     | 9.259 MM m        |


#### methyl (S)-2-(3-isopropyl-1-methyl-2-oxoindolin-3-yl)acetate (30)


96% yield (25.1 mg); 95.5:4.5 er; Colorless oil;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = +22$  (c = 0.25, EA). **1H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 – 7.25 (m, 1H), 7.14 (d, J = 7.3 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 3.40 (s, 3H), 3.24 (s, 3H), 3.02 (dd, J = 20.4 Hz, J = 16.2 Hz, 2H), 2.12 (hept, J = 6.8 Hz, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.72 (d, J = 6.7 Hz, 3H).

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 179.4, 170.6, 144.8, 129.9, 128.1, 123.2, 122.0, 107.8, 52.9, 51.6, 39.4, 35.4, 26.1, 17.2, 16.9 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{15}H_{19}NO_3+H]^+$  262.1443, found 262.1436.

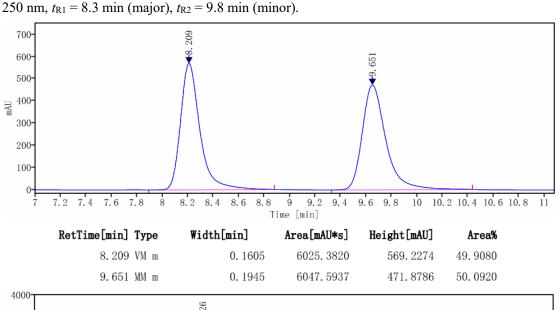
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 1 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 8.4 min (major),  $t_{R2}$  = 13.5 min (minor).

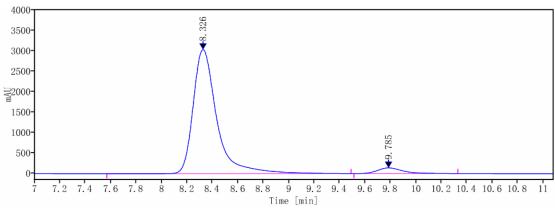




| Area%    | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|----------|-------------|-------------|--------------------|-------------------|
| 95. 3144 | 738. 1860   | 7810. 9961  | 0.1594             | 8.384 MM m        |
| 4, 6856  | 20. 9737    | 383, 9807   | 0. 2826            | 13.549 MM m       |

#### methyl (R)-2-(3-butyl-1-methyl-2-oxoindolin-3-yl)acetate (3p)


92% yield (25.3 mg); 95.5:4.5 er; White solid; m.p. 58 - 60 °C;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -5$  (c = 0.16, EA).


<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.28 (td, J = 7.7, 1.4 Hz, 1H), 7.17 – 7.14 (m, 1H), 7.04 (td, J = 7.5, 1.0 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 3.42 (s, 3H), 3.25 (s, 3H), 2.93 (dd, J = 45.2, 16.2 Hz, 2H), 1.89 – 1.69 (m, 2H), 1.26 – 1.11 (m, 2H), 1.07 – 0.92 (m, 1H), 0.86 – 0.71 (m, 4H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 179.4, 170.3, 144.4, 131.3, 128.1, 122.4, 122.3, 107.9, 51.5, 49.7, 41.2, 37.9, 26.3, 25.6, 22.7, 13.8 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{16}H_{21}NO_3+H]^+$  276.1600, found 276.1597.

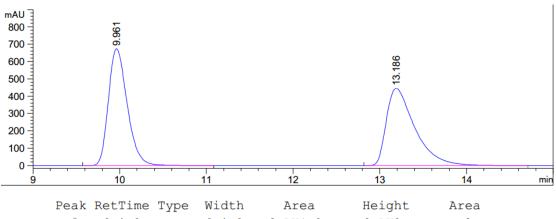
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 8.3 min (major),  $t_{R2}$  = 9.8 min (minor).



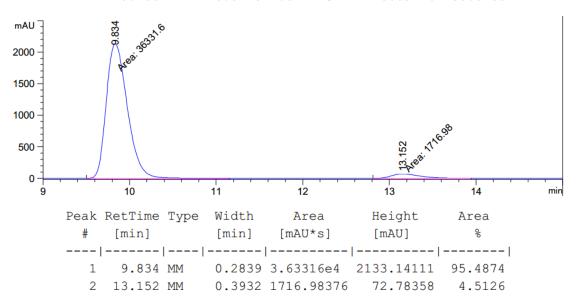


| Area%    | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|----------|-------------|-------------|--------------------|-------------------|
| 95. 3961 | 3030.8250   | 39052.4571  | 0. 1943            | 8.326 BM m        |
| 4.6039   | 138. 0624   | 1884. 7272  | 0. 2083            | 9.785 MM m        |

#### methyl (R)-2-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)acetate (3q)


93% yield (24.5 mg); 95.5:4.5 er; White solid; m.p. 78 - 80 °C;  $R_f = 0.1$  (PE/EA = 4/1);  $[\alpha]_D^{20} = +17$  (c = 0.14, EA).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.83 - 6.75 (m, 3H), 3.79 (s, 3H), 3.48 (s, 3H), 3.23 (s, 3H), 2.91 (dd, J = 66. Hz, 16.5 Hz, 2H), 1.37 (s, 3H) ppm.


<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 179.5, 170.3, 155.9, 137.1, 134.4, 111.9, 110.2, 108.3, 55.8, 51.6, 45.9, 41.3, 26.5, 24.3 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{14}H_{17}NO_4+H]^+$  264.1236, found 264.1233.

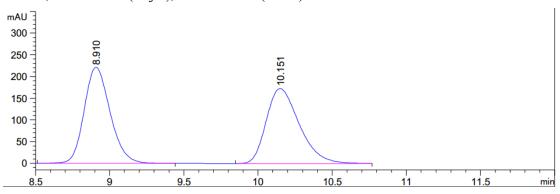
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 9.8 min (major),  $t_{R2}$  = 13.2 min (minor).



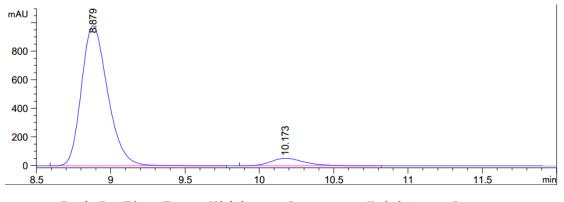
| Peak | RetTime | Type | Width  | Area      | Height    | Area    |  |
|------|---------|------|--------|-----------|-----------|---------|--|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]     | 90      |  |
|      |         |      |        |           |           |         |  |
| 1    | 9.961   | VB   | 0.2317 | 1.01562e4 | 674.32428 | 49.9545 |  |
| 2    | 13.186  | BB   | 0.3425 | 1.01747e4 | 445.39276 | 50.0455 |  |



$$CO_2Me$$
 $iPr$ 


#### methyl (S)-2-(1-isopropyl-2-oxo-3-phenylindolin-3-yl)acetate (3r)

62% yield (20.0 mg); 93.5:6.5 er; White solid; m.p. 65 – 67 °C;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -35$  (c = 0.16, EA).


<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.32 – 7.23 (m, 7H), 7.09 – 7.04 (m, 2H), 4.64 (hept, J = 7.0 Hz, 1H), 3.58 (d, J = 16.1 Hz, 1H), 3.43 (s, 3H), 3.24 (d, J = 16.1 Hz, 1H), 1.50 (t, J = 7.3 Hz, 6H) ppm. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 177.7, 170.0, 143.2, 139.6, 131.8, 128.7, 128.3, 127.6, 126.4, 124.6, 122.0, 110.0, 53.0, 51.6, 44.1, 41.6, 19.4, 19.0 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{20}H_{21}NO_3+H]^+$  324.1600, found 324.1592.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 70/30, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 8.9 min (major),  $t_{R2}$  = 10.2 min (minor).



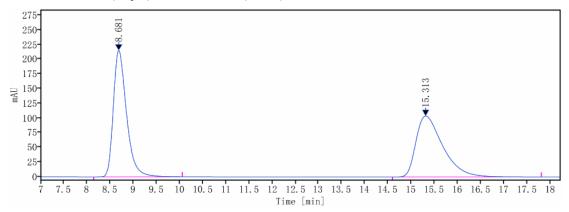
| Peak | RetTime | Type | Width  | Area       | Height    | Area    |  |
|------|---------|------|--------|------------|-----------|---------|--|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | %       |  |
|      |         |      |        |            |           |         |  |
| 1    | 8.910   | VB   | 0.1881 | 2696.84009 | 221.33765 | 50.2123 |  |
| 2    | 10.151  | BBA  | 0.2408 | 2674.03052 | 172.58652 | 49.7877 |  |



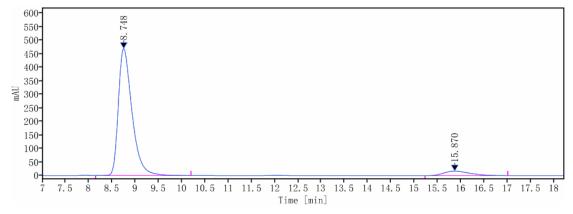
| Peak | RetTime | Type | Width  | Area      | Height    | Area    |  |
|------|---------|------|--------|-----------|-----------|---------|--|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]     | 용       |  |
|      |         |      |        |           |           |         |  |
| 1    | 8.879   | BB   | 0.1886 | 1.19860e4 | 980.34070 | 93.7418 |  |
| 2    | 10.173  | BB   | 0.2383 | 800.18542 | 51.78182  | 6.2582  |  |

$$CO_2Me$$
Bn

#### methyl (S)-2-(1-benzyl-2-oxo-3-phenylindolin-3-yl)acetate (3s)


51% yield (18.9 mg); 93.5:6.5 er; White solid; m.p. 101 - 103 °C;  $R_f = 0.6$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -56$  (c = 0.23, EA).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 – 7.18 (m, 12H), 7.05 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 7.8 Hz, 1H), 4.93 (dd, J = 43.2Hz, 15.8 Hz, 2H), 3.64 (d, J = 16.2 Hz, 1H), 3.38 (s, 3H), 3.31 (d, J = 16.2 Hz, 1H) ppm.


<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 178.1, 170.1, 143.7, 139.4, 136.0, 131.2, 128.8, 128.7, 128.6, 127.8, 127.6, 127.5, 126.6, 124.5, 122.6, 109.5, 53.4, 51.7, 44.3, 41.7 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{24}H_{21}NO_3+H]^+$  372.1600, found 372.1595.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 1 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 8.7 min (major),  $t_{R2}$  = 15.9 min (minor).

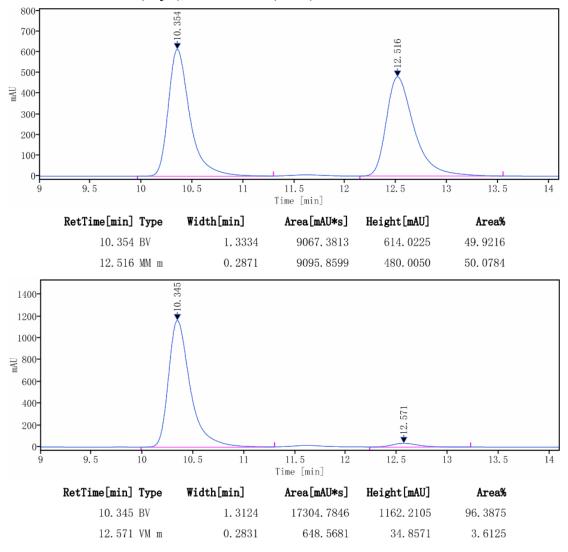


| RetTime[min] Type | ${\tt Width[min]}$ | Area[mAU*s] | Height[mAU] | Area%    |
|-------------------|--------------------|-------------|-------------|----------|
| 8.681 BM m        | 0.3005             | 4248. 1985  | 214. 9976   | 50. 3417 |
| 15.313 MM m       | 0.6131             | 4190, 5323  | 103, 7770   | 49.6583  |



| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 93. 5146 | 468. 5274   | 9519. 2893  | 0.3090     | 8.748 BM m        |
| 6.4854   | 16.7293     | 660. 1756   | 0.6054     | 15.870 MM m       |

#### ethyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3t)


96% yield (29.6 mg); 96.5:3.5 er; White solid; m.p. 81 - 83 °C;  $R_f = 0.5$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -83$  (c = 0.12, EA).

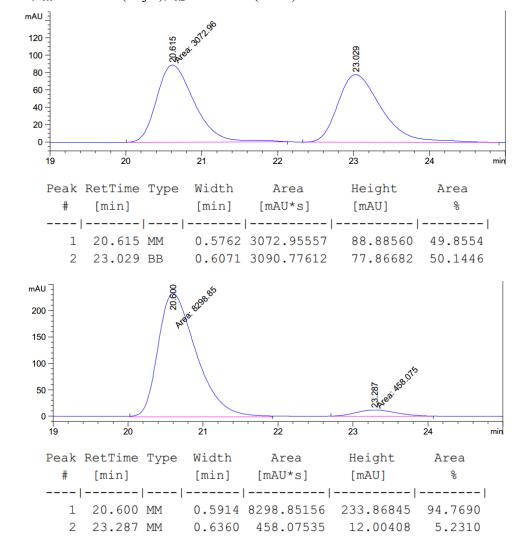
<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 – 7.20 (m, 7H), 7.10 (td, J = 7.5, 1.0 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 3.87 (qq, J = 10.8, 7.1 Hz, 2H), 3.58 (d, J = 16.0 Hz, 1H), 3.26 – 3.21 (m, 4H), 0.97 (t, J = 7.1 Hz, 3H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.1, 169.6, 144.6, 139.2, 131.1, 128.7, 127.7, 126.6, 124.6, 122.5, 108.4, 60.6, 53.3, 42.2, 26.7, 13.9 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{19}H_{19}NO_3+H]^+$  310.1443, found 310.1439.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 10.3 min (major),  $t_{R2}$  = 12.6 min (minor).




#### benzyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3u)

85% yield (31.6 mg); 95:5 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -85$  (c = 0.15, EA). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 – 7.20 (m, 10H), 7.10 – 7.03 (m, 3H), 6.77 (d, J = 7.8 Hz, 1H), 4.87 – 4.78 (m, 2H), 3.46 (dd, J = 137.1, 16.0 Hz, 2H), 2.99 (s, 3H) ppm.

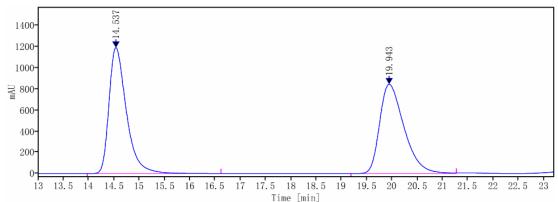
<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 177.9, 169.5, 144.5, 139.2, 135.2, 130.9, 128.7, 128.7, 128.5, 128.4, 128.3, 127.7, 126.6, 124.6, 122.5, 108.6, 66.6, 53.3, 42.2, 26.4 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{24}H_{21}NO_3+H]^+$  372.1600, found 372.1592.

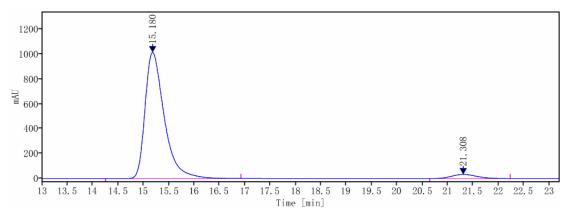
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 20.6 min (major),  $t_{R2}$  = 23.3 min (minor).



#### 2-(thiophen-2-yl)ethyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3v)


93% yield (36.4 mg); 96:4 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -84$  (c = 0.27, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.36 – 7.20 (m, 7H), 7.13 – 7.06 (m, 2H), 6.91 – 6.88 (m, 2H), 6.73 (d, J = 2.8 Hz, 1H), 4.05 (t, J = 6.8 Hz, 2H), 3.43 (dd, J = 86.4 Hz, 16.3 Hz, 2H), 3.21 (s, 3H), 2.88 (t, J = 6.9 Hz, 2H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.0, 169.6, 144.6, 139.5, 139.1, 131.0, 128.8, 128.7, 127.7, 126.9, 126.6, 125.5, 124.6, 124.0, 122.6, 108.5, 64.7, 53.2, 42.0, 29.0, 26.7 ppm.

**HRMS** (ESI-TOF) calcd for [C<sub>23</sub>H<sub>21</sub>NO<sub>3</sub>S+H]<sup>+</sup> 392.1320, found 392.1314.

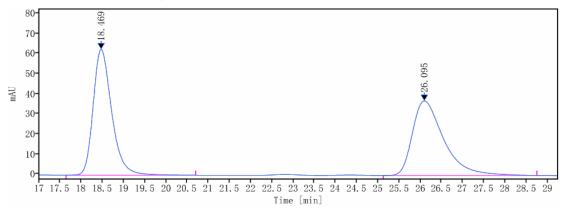
**HPLC**: Daicel Chiralcel OD-H, n-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 15.2 min (major),  $t_{R2}$  = 21.3 min (minor).



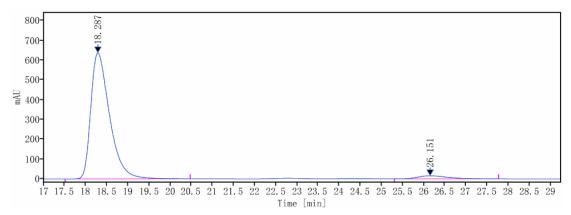
| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 50. 1261 | 1193. 1076  | 28513. 9027 | 2.6450     | 14.537 BB         |
| 49.8739  | 845. 8696   | 28370. 4868 | 2. 0853    | 19.943 BV         |



| Area%   | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|---------|-------------|-------------|--------------------|-------------------|
| 95.8154 | 1012. 9843  | 26529.8934  | 0.3975             | 15.180 MM m       |
| 4. 1846 | 33. 2781    | 1158.6642   | 0.5402             | 21.308 MM m       |


#### 2,2-dimethoxyethyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3w)

93% yield (34.2 mg); 96:4 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -71$  (c = 0.14, EA). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 – 7.21 (m, 7H), 7.10 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.30 (t, J = 5.3 Hz, 1H), 3.93 – 3.82 (m, 2H), 3.59 (d, J = 16.4 Hz, 1H), 3.35 – 3.24 (m, 10H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.9, 169.3, 144.6, 139.0, 131.0, 128.7, 127.7, 126.6, 124.5, 122.5, 108.5, 100.8, 62.9, 53.7, 53.7, 53.2, 41.7, 26.7 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{21}H_{23}NO_5+H]^+$  370.1654, found 370.1651.

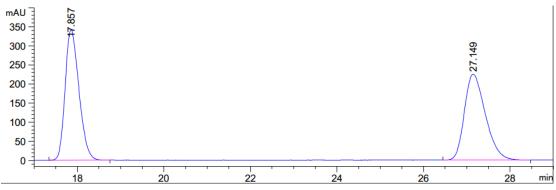
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 18.3 min (major),  $t_{R2}$  = 26.2 min (minor).



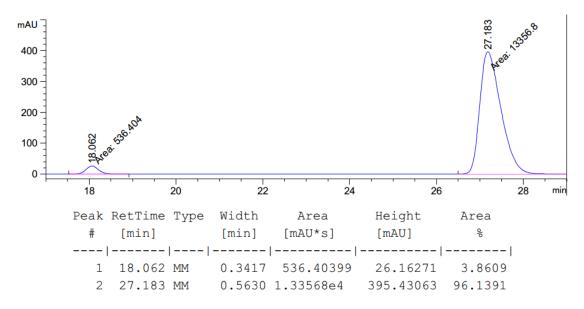
| RetTime[min] Type | Width[min] | Area[mAU*s] | Height[mAU] | Area%   |
|-------------------|------------|-------------|-------------|---------|
| 18.469 BM m       | 0.4639     | 1907. 2907  | 62. 7055    | 50.0772 |
| 26.095 BM m       | 0.7720     | 1901. 4099  | 37. 1552    | 49.9228 |



| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 96. 2057 | 637. 6668   | 19597. 1687 | 0.4685     | 18.287 BM m       |
| 3. 7943  | 15.6106     | 772. 8990   | 0.7506     | 26.151 BM m       |


#### 2-(trimethylsilyl)ethyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3x)

97% yield (37.2 mg); 96:4 er; Colorless oil;  $R_f = 0.7$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -71$  (c = 0.14, EA). **1H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 – 7.45 (m, 7H), 7.34 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 7.7 Hz, 1H), 4.24 – 4.06 (m, 2H), 3.79 (d, J = 16.2 Hz, 1H), 3.50 – 3.45 (m, 4H), 1.04 – 0.89 (m, 2H), 0.20 (s, 9H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.6, 173.0, 141.1, 130.3, 126.0, 121.3, 64.3, 46.7, 45.3, 43.4, 31.9, 31.2, 24.7, 18.9, 0.0 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{22}H_{27}NO_3Si+H]^+$  382.1838, found 382.1838.

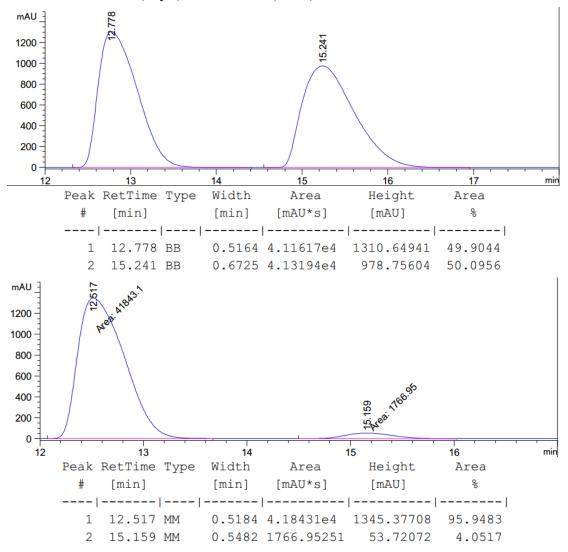
**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 90/10, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 18.1 min (minor),  $t_{R2}$  = 27.2 min (major).



| Peak | RetTime | Type | Width  | Area       | Height    | Area    |
|------|---------|------|--------|------------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]    | [mAU]     | 용       |
|      |         |      |        |            |           |         |
| 1    | 17.857  | BB   | 0.3447 | 7566.13428 | 341.18427 | 50.0010 |
| 2    | 27.149  | BB   | 0.5207 | 7565.82275 | 224.79837 | 49.9990 |



#### cyclobutyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3y)


98% yield (32.8 mg); 96:4 er; White solid; m.p. 52 - 54 °C;  $R_f = 0.5$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -68$  (c = 0.14, EA).

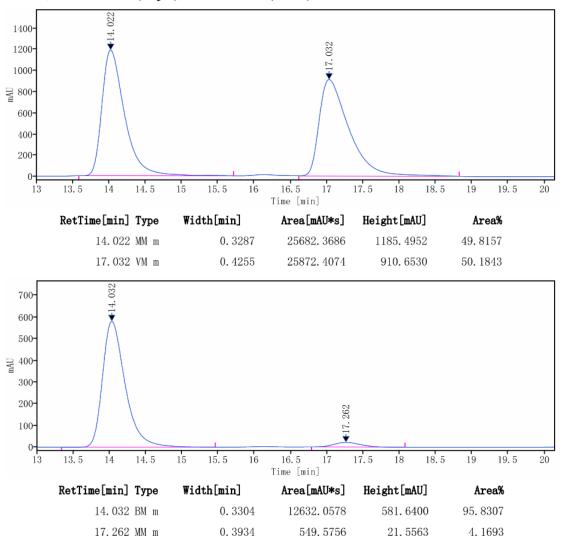
<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.37 – 7.23 (m, 7H), 7.11 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.67 (p, J = 7.4 Hz, 1H), 3.57 (d, J = 15.8 Hz, 1H), 3.23 – 3.17 (m, 4H), 2.16 – 2.08 (m, 2H), 1.76 – 1.41 (m, 4H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.0, 168.8, 144.6, 139.2, 131.0, 128.7, 127.7, 126.6, 124.7, 122.5, 108.3, 69.0, 53.3, 42.3, 30.0, 29.7, 26.7, 13.5 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{21}H_{21}NO_3+H]^+$  336.1600, found 336.1598.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 12.5 min (major),  $t_{R2}$  = 15.2 min (minor).




#### cyclopent-3-en-1-yl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3z)

81% yield (28.1 mg); 96:4 er; Colorless oil;  $R_f = 0.7$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -68$  (c = 0.14, EA). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 – 7.20 (m, 7H), 7.10 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 7.8 Hz,1H), 5.60 – 5.49 (m, 2H), 5.10 (tt, J = 6.8, 2.0 Hz, 1H), 3.60 (d, J = 15.6 Hz, 1H), 3.20 – 3.15 (m, 4H), 2.57 – 2.37 (m, 2H), 2.09 (d, J = 17.8 Hz, 1H), 1.58 (d, J = 18.0 Hz, 1H) ppm.

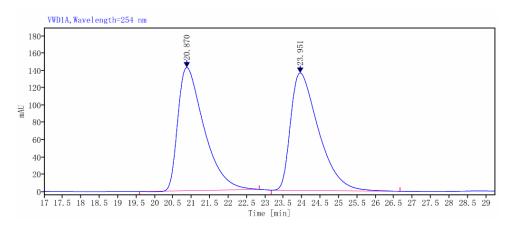
<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 178.0, 169.4, 144.6, 139.3, 130.8, 128.7, 128.6, 128.4, 127.8, 127.6, 126.6, 124.6, 122.4, 108.5, 74.3, 53.3, 42.5, 39.5, 39.2, 26.6 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{22}H_{21}NO_3+H]^+$  348.1600, found 348.1602.

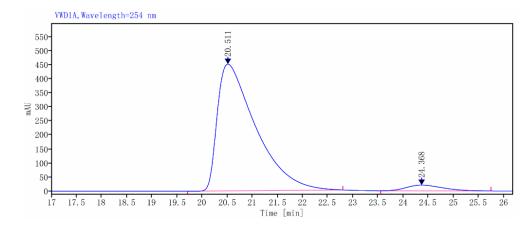
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 14.0 min (major),  $t_{R2}$  = 17.3 min (minor).



#### 4-methoxyphenyl (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetate (3aa)


73% yield (30.2 mg, with 10 mol % Pd (OAc)<sub>2</sub>, 20 mol% L1); 96:4 er; White solid; m.p. 98 – 100 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -47$  (c = 0.12, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 – 7.28 (m, 7H), 7.224 – 7.17 (m, 1H), 6.95 (d, J = 7.8 Hz, 1H), 6.80 – 6.75 (m, 2H), 6.60 – 6.54 (m, 2H), 3.85 (d, J = 15.7 Hz, 1H), 3.75 (s, 3H), 3.49 (d, J = 15.8 Hz, 1H), 3.22 (s, 3H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.8, 168.7, 157.3, 144.8, 143.7, 139.0, 130.7, 128.9, 128.8, 127.8, 126.7, 124.9, 122.6, 122.0, 114.4, 108.7, 55.5, 53.4, 42.3, 26.7 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{22}H_{23}NO_4+H]^+$  388.1543, found 388.1545.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 70/30, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 20.5 min (major),  $t_{R2}$  = 24.4 min (minor).



| RetTime[min] | Type | ${\tt Width[min]}$ | Area[mAU*s] | Height[mAU] | Area%    |
|--------------|------|--------------------|-------------|-------------|----------|
| 20.870       | MM m | 0.7456             | 7020. 6421  | 142. 3047   | 49. 4599 |
| 23.951       | MM m | 0.8039             | 7173. 9636  | 135.6636    | 50. 5401 |



| RetTime[min] | Type | Width[min] | Area[mAU*s] | <pre>Height[mAU]</pre> | Area%    |
|--------------|------|------------|-------------|------------------------|----------|
| 20. 511      | MM m | 0.7860     | 24037. 5726 | 452.3437               | 95. 9469 |
| 24. 368      | MM m | 0.7577     | 1015. 4276  | 20. 4712               | 4.0531   |

In addition, we also investigated the reaction with some nitrogen nucleophiles such as indoline, aniline and piperidine under the standard condition. Unfortunately, no desired product was detected, and only amidation products **5b-5d** were isolated. Controlled experiments showed that the competitive side reaction can occur directly even without base.

### Controlling experiment

### N-methyl-N-(2-(1-phenylvinyl)phenyl)indoline-1-carboxamide (5b)

80% yield (28.4mg); colorless oil; Rf = 0.3 (PE/EA = 4/1);

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.57 (d, J = 8.0 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.39 – 7.24 (m, 9H), 7.18 – 7.12 (m, 2H), 7.06 (dd, J = 7.3, 1.4 Hz, 1H), 6.89 (td, J = 7.4, 1.1 Hz, 1H), 5.60 (d, J = 1.1 Hz, 1H), 5.15 (d, J = 1.1 Hz, 1H), 3.13 (t, J = 8.5 Hz, 2H), 2.93 (s, 3H), 2.83 (t, J = 8.4 Hz, 2H) ppm.

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 157.5, 147.2, 144.4, 143.0, 140.6, 139.6, 131.9, 130.5, 129.1, 128.1, 128.1, 127.9, 127.0, 126.4, 124.1, 121.8, 116.4, 116.1, 49.6, 39.1, 28.8 ppm.

HRMS (ESI-TOF) calcd for [C<sub>24</sub>H<sub>23</sub>N<sub>2</sub>O+H]+ 355.1805, found 355.1808.

### 1-methyl-3-phenyl-1-(2-(1-phenylvinyl)phenyl)urea (5c)

90% yield (28.3 mg); colorless oil; Rf = 0.3 (PE/EA = 6/1);

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.54 – 7.47 (m, 3H), 7.33 – 7.14 (m, 10H), 7.01 – 6.95 (m, 1H), 5.98 (s, 1H), 5.62 (d, J = 1.2 Hz, 1H), 5.35 (d, J = 1.1 Hz, 1H), 2.83 (s, 3H) ppm.

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 153.7, 148.1, 140.7, 140.6, 138.9, 132.1, 129.9, 129.1, 128.7, 128.6, 128.3, 128.0, 126.5, 122.6, 119.1, 117.1, 36.2 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{21}H_{24}N_2O+H]+329.1648$ , found 329.1649.

### N-methyl-N-(2-(1-phenylvinyl)phenyl)piperidine-1-carboxamide (5d)

92% yield (29.4 mg); colorless oil; Rf = 0.3 (PE/EA = 4/1);

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.71 – 6.68 (m, 9H), 5.66 (d, J = 1.3 Hz, 1H), 5.33 (d, J = 1.3 Hz, 1H), 2.92 (d, J = 3.0 Hz, 7H), 1.41 (td, J = 6.3, 3.7 Hz, 2H), 1.27 (ddt, J = 7.6, 4.6, 2.5 Hz, 4H) ppm. <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>) δ 153.7, 148.1, 140.7, 140.6, 138.9, 132.1, 129.9, 129.1, 128.7, 128.6, 128.3, 128.0, 126.5, 122.6, 119.1, 117.1, 36.2 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{21}H_{24}N_2O+H]+321.1961$ , found 321.1961.

## 4. Optimization of Reaction Parameters for the Palladium-

# Catalyzed Asymmetric Carbamoyl-Carbonylation of Unactivated

### **Alkenes**

## **Table S1 Ligand Screening**

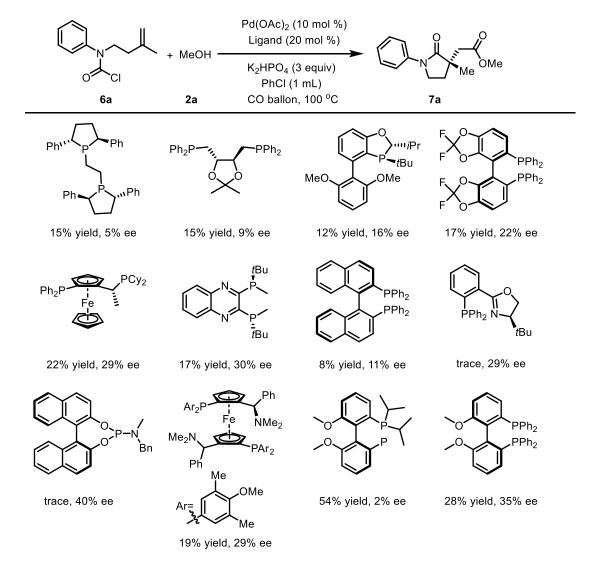



Table S2. Base Screening

| Entry | [Pd]                 | Base                            | Solvent | Yield% | er        |
|-------|----------------------|---------------------------------|---------|--------|-----------|
| 1     | Pd(OAc) <sub>2</sub> | K <sub>2</sub> CO <sub>3</sub>  | PhCl    | 15     | 92:8      |
| 2     | $Pd(OAc)_2$          | Na <sub>2</sub> CO <sub>3</sub> | PhCl    | 40     | 78:22     |
| 3     | $Pd(OAc)_2$          | $K_3PO_4$                       | PhCl    | 20     | 70.5:29.5 |
| 4     | $Pd(OAc)_2$          | KH <sub>2</sub> PO <sub>4</sub> | PhCl    | trace  | -         |
| 5     | $Pd(OAc)_2$          | KHCO <sub>3</sub>               | PhCl    | 55     | 83.5:16.5 |
| 6     | $Pd(OAc)_2$          | Li <sub>2</sub> CO <sub>3</sub> | PhCl    | nd     | -         |
| 7     | $Pd(OAc)_2$          | $Et_3N$                         | PhCl    | nd     | -         |
| 8     | $Pd(OAc)_2$          | $Ag_2CO_3$                      | PhCl    | nd     | -         |

[a] Reaction conditions: **6a** (0.1 mmol), **2a** (1 mmol), Pd(OAc)<sub>2</sub> (10 mol %), (S)-OMe-BIPHEP (20 mol %), Base (0.3 mmol) in 1 mL solvent, 100 °C (oil bath temperature), 24 h, CO (balloon). [b] Isolated yields. [c] The er values were determined by HPLC analysis on a chiral stationary phase.

**Table S3. Solvent Screening** 

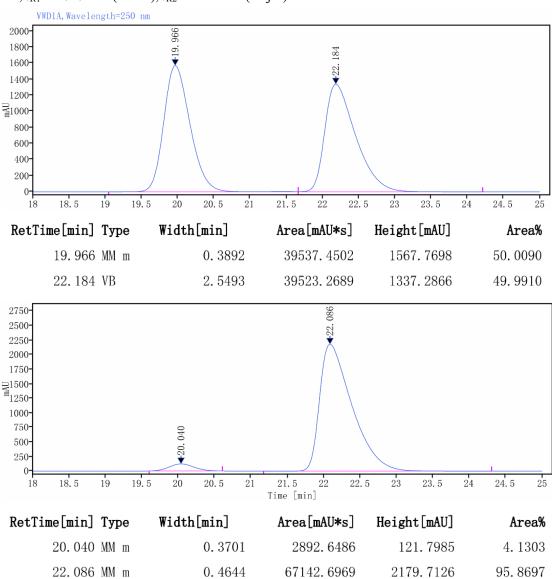
| Entry | [Pd]                 | Base              | Solvent            | Yield% | ee% |
|-------|----------------------|-------------------|--------------------|--------|-----|
| 1     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | THF                | nd     | -   |
| 2     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | DCM                | nd     | -   |
| 3     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | Et <sub>2</sub> O  | nd     | -   |
| 4     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | 1,4-Dioxane        | nd     | -   |
| 5     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | Tol                | 20     | 58  |
| 6     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | Benzene            | 55     | 0   |
| 7     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | Benzotrifluoride   | 65     | 86  |
| 8     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | Mesitylene         | trace  | 55  |
| 9     | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | o-Xylene           | 40     | 44  |
| 10    | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | PhF                | 47     | 30  |
| 11    | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | $C_6F_6$           | 50     | 87  |
| 12    | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | Acetone            | 82     | 87  |
| 13    | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | MeCN               | 68     | 90  |
| 14    | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | MeCN:Acetone (1:4) | 80     | 89  |
| 15    | Pd(OAc) <sub>2</sub> | KHCO <sub>3</sub> | MeCN:Acetone (1:2) | 88     | 90  |

[a] Reaction conditions: **6a** (0.1 mmol), **2a** (1 mmol), Pd(OAc)<sub>2</sub> (10 mol %), (S)-OMe-BIPHEP (20 mol %), KHCO<sub>3</sub> (0.3 mmol) in 1 mL solvent, 100 °C (oil bath temperature), 24 h, CO (balloon). [b] Isolated yields. [c] The er values were determined by HPLC analysis on a chiral stationary phase.

## 5. General Procedure for the Palladium-Catalyzed Asymmetric

## Carbamoyl-Carbonylation of Unactivated Alkenes

An oven-dried 10 mL Schlenk tube was charged with the substrate **6a** (27.2 mg, 0.1 mmol), Pd(OAc)<sub>2</sub> (2.2 mg, 10 mol %), **L1** (11.6 mg, 20 mol %), and KHCO<sub>3</sub> (30 mg, 0.3 mmol). The vial is thoroughly flushed with CO, and MeOH (45  $\mu$ L, 1 mmol), as well as MeCN/acetone (1/2, 1.0 mL) was added under balloon pressure of CO. Then the reaction mixture was stirred at room temperature for 5 min, and then raised to 80 °C (oil bath temperature) for 48 h with stirring. After the reaction vessel was cooled to room temperature, the reaction mixture was filtered through a plug of celite and concentrated under reduced pressure. The solution was purified by flash column chromatography on silica gel (PE/EA = 10/1) to afford the desired product **7a** in 83% yield (20.6 mg).


#### methyl (S)-2-(3-methyl-2-oxo-1-phenylpyrrolidin-3-yl)acetate (7a)

83% yield (20.6 mg); 96:4 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -17$  (c = 0.13, EA). **H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 – 7.60 (m, 2H), 7.53 – 7.35 (m, 2H), 7.24 – 7.09 (m, 1H), 3.96 – 3.79 (m, 2H), 3.72 (s, 3H), 2.78 (d, J = 16.0 Hz, 1H), 2.69 (s, 1H), 2.42 – 2.30 (m, 1H), 2.09 (ddd, J = 12.8, 7.4, 3.9 Hz, 1H), 1.34 (s, 3H) ppm.

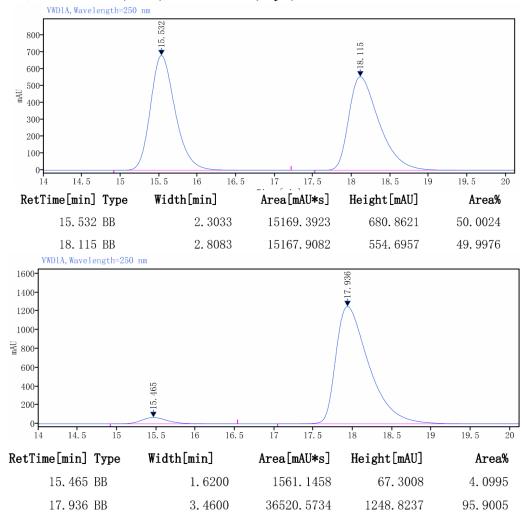
<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 177.0, 171.8, 139.6, 128.9, 124.6, 119.9, 51.6, 45.2, 43.8, 41.6, 30.4, 23.2 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{14}H_{17}NO_3+H]^+$  248.1281, found 248.1283.

**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 95/5, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 20.0 min (minor),  $t_{R2}$  = 22.1 min (major).



### methyl (S)-2-(1-(4-methoxyphenyl)-3-methyl-2-oxopyrrolidin-3-yl)acetate (7b)


85% yield (23.5 mg), 96:4 er; 96:4 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 6/1);  $[\alpha]_D^{20} = -13$  (c = 0.064, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.57 (d, J = 9.1 Hz, 2H), 6.94 (d, J = 9.1 Hz, 2H), 3.84 – 3.76 (m, 5H), 3.72 (s, 3H), 2.76 (d, J = 16.0 Hz, 1H), 2.65 (d, J = 16.0 Hz, 1H), 2.43 – 2.23 (m, 1H), 2.15 – 1.87 (m, 1H), 1.33 (s, 3H) ppm.

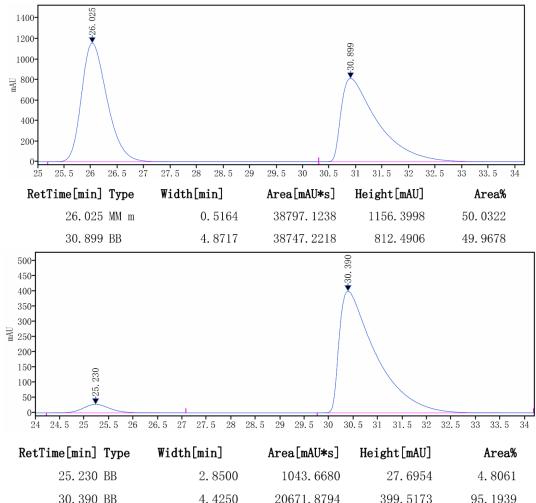
<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 176.7, 171.8, 156.6, 132.9, 121.8, 114.1, 55.5, 51.6, 45.7, 43.5, 41.6, 30.5, 23.2 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{15}H_{19}NO_3+H]^+$  278.1387, found 278.1389.

**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 80/20, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 15. 5 min (minor),  $t_{R2}$  = 17.9 min (major).



### methyl (S)-2-(1-(4-chlorophenyl)-3-methyl-2-oxopyrrolidin-3-yl)acetate (7c)


78% yield (21.9 mg), 95:5 er; White solid; m.p. 60 - 62 °C;  $R_f = 0.3$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -48$  (c = 0.044, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, J = 9.0 Hz, 2H), 7.36 (d, J = 9.0 Hz, 1H), 3.88 - 3.77 (m, 2H), 3.71 (s, 3H), 2.79 (d, J = 16.2 Hz, 1H), 2.64 (d, J = 16.2 Hz, 1H), 2.49 – 2.30 (m, 1H), 2.15 – 2.04 (m, 1H), 1.33 (s, 3H) ppm.

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 177.2, 171.7, 138.2, 129.6, 128.8, 120.9, 51.7, 45.2, 43.7, 41.5, 30.2, 23.3 ppm.

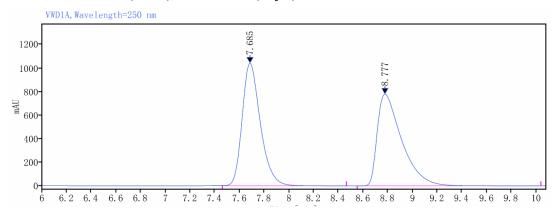
**HRMS** (ESI-TOF) calcd for  $[C_{14}H_{16}CINO_3+H]^+$  281.0891, found 281.0896.

**HPLC**: Daicel Chiralcel AD-H, n-hexane/isopropanol 95/5, flow rate = 1.0 mL/min, uv-vis  $\lambda = 250$ nm,  $t_{R1} = 25.2 \text{ min (minor)}$ ,  $t_{R2} = 30.4 \text{ min (major)}$ .

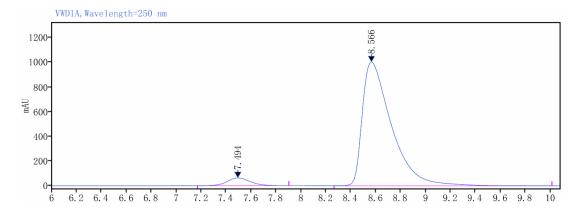


### methyl (S)-2-(3-methyl-2-oxo-1-(4-(trifluoromethyl)phenyl)pyrrolidin-3-yl)acetate (7d)

65% yield (21.2 mg), 95.5:4.5 er; White solid; m.p. 81 - 83 °C;  $R_f = 0.3$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -16$  (c = 0.044, EA).


<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.93 – 7.75 (m, 2H), 7.74 – 7.60 (m, 2H), 3.96 – 3.75 (m, 2H), 3.70 (s, 3H), 2.80 (d, J = 16.3 Hz, 1H), 2.64 (d, J = 16.3 Hz, 1H), 2.40 (dt, J = 12.8, 8.5 Hz, 1H), 2.08 (ddd, J = 12.8, 7.1, 4.2 Hz, 1H), 1.32 (s, 3H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.7, 171.6, 142.5, 126.0, 126.0, 119.2, 51.7, 45.0, 43.8, 41.5, 30.1, 23.4 ppm.


<sup>19</sup>**F NMR** (282 MHz, CDCl<sub>3</sub>) δ -62.14 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{15}H_{16}F_3NO_3+H]^+$  316.1155, found 316.1162.

**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 80/20, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 7.5 min (minor),  $t_{R2}$  = 8.6 min (major).

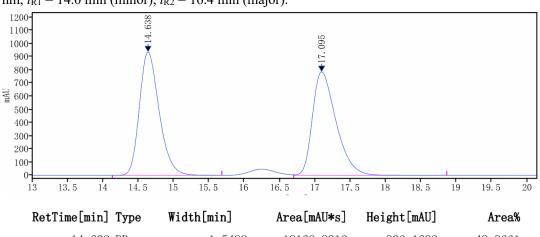


| Area%    | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|----------|-------------|-------------|--------------------|-------------------|
| 49. 9600 | 1039. 7384  | 10642. 9097 | 1.0051             | 7.685 VB          |
| 50.0400  | 776. 7352   | 10659. 9692 | 1. 4867            | 8.777 BB          |

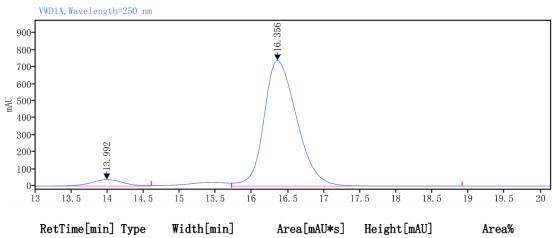


| Area%    | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|----------|-------------|-------------|--------------------|-------------------|
| 4.6910   | 62. 4825    | 801.7390    | 0. 1967            | 7.494 MM m        |
| 95. 3090 | 1002. 5571  | 16289. 1349 | 0. 2426            | 8.566 MM m        |

### methyl (S)-2-(3-methyl-2-oxo-1-(m-tolyl)pyrrolidin-3-yl)acetate (7e)


70% yield (18.3 mg), 95.5:4.5 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -14$  (c = 0.056, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.93 – 7.75 (m, 2H), 7.74 – 7.60 (m, 2H), 3.96 – 3.75 (m, 2H), 3.70 (s, 3H), 2.80 (d, J = 16.3 Hz, 1H), 2.64 (d, J = 16.3 Hz, 1H), 2.40 (dt, J = 12.8, 8.5 Hz, 1H), 2.08 (ddd, J = 12.8, 7.1, 4.2 Hz, 1H), 1.32 (s, 3H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.0, 171.7, 139.5, 138.7, 128.6, 125.4, 120.8, 116.9, 51.6, 45.3, 43.8, 41.5, 30.4, 23.1, 21.6 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{15}H_{19}NO_3+H]^+$  262.1438, found 262.1442.

**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 95/5, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 14.0 min (minor),  $t_{R2}$  = 16.4 min (major).

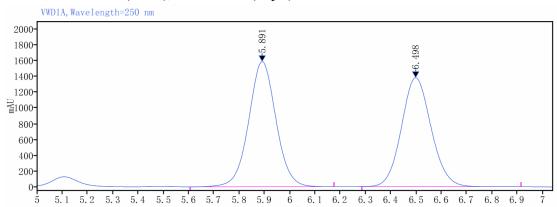


| Area%    | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|----------|-------------|-------------|--------------------|-------------------|
| 49. 9661 | 936. 1692   | 18168. 9912 | 1. 5488            | 14.638 BB         |
| 50. 0339 | 785. 1142   | 18193. 6475 | 2. 1651            | 17.095 VB         |

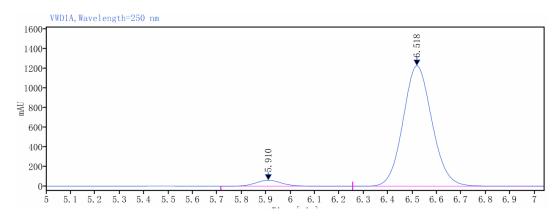


| RetTime[min] Type | Width[min] | Area[mAU*s] | Height[mAU] | Area%    |
|-------------------|------------|-------------|-------------|----------|
| 13.992 BV         | 1.7848     | 1185.0596   | 38. 2215    | 4.8438   |
| 16. 356 VB        | 3. 1947    | 23280. 3086 | 738. 2542   | 95. 1562 |

### methyl (S)-2-(1-(3-chlorophenyl)-3-methyl-2-oxopyrrolidin-3-yl)acetate (7f)


75% yield (21.1 mg), 95.5:4.5 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -21$  (c = 0.048, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.76 (t, J = 2.1 Hz, 1H), 7.66 – 7.51 (m, 1H), 7.34 – 7.26 (m, 1H), 7.13 (m, 1H), 3.88 – 3.77 (m, 2H), 3.69 (s, 3H), 2.77 (d, J = 16.2 Hz, 1H), 2.62 (d, J = 16.2 Hz, 1H), 2.37 (dt, J = 12.9, 8.5 Hz, 1H), 2.05 (ddd, J = 12.8, 7.2, 4.1 Hz, 1H), 1.30 (s, 3H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.3, 171.6, 140.7, 134.6, 129.8, 124.4, 119.8, 117.6, 51.7, 45.1, 43.8, 41.5, 30.1, 23.3 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{14}H_{16}CINO_3+H]^+$  282.0891, found 282.0897.

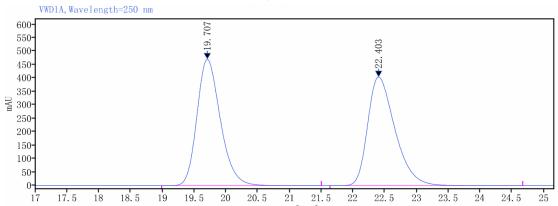
**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 80/20, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 5.9 min(minor),  $t_{R2}$  = 6.5 min (major).



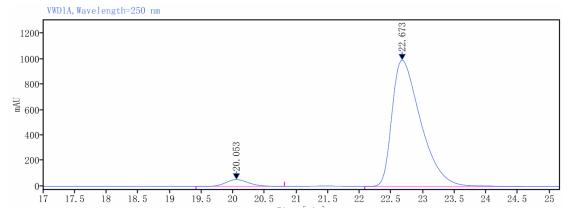
| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 51. 3913 | 1579. 3950  | 11863. 2664 | 0. 5695    | 5.891 BB          |
| 48.6087  | 1374. 8252  | 11220. 9316 | 0. 1262    | 6.498 MM m        |



| Area%    | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|----------|-------------|-------------|--------------------|-------------------|
| 4. 2439  | 60. 4945    | 449. 9957   | 0. 5400            | 5. 910 VB         |
| 95. 7561 | 1227. 3201  | 10153. 2364 | 0. 1275            | 6.518 MM m        |


### ethyl (S)-2-(3-methyl-2-oxo-1-phenylpyrrolidin-3-yl)acetate (7g)

78% yield (20.3 mg), 96:4 er; Colorless oil;  $R_f = 0.3$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -11$  (c = 0.044, EA). **1H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (dd, J = 8.8, 1.1 Hz, 1H), 7.40 (dd, J = 8.6, 7.3 Hz, 2H), 7.21 – 7.15 (m, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.92 – 3.80 (m, 2H), 2.77 (d, J = 15.9 Hz, 1H), 2.63 (d, J = 16.0 Hz, 1H), 2.51 – 2.30 (m, 1H), 2.07 (ddd, J = 12.8, 7.5, 3.7 Hz, 1H), 1.33 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.1, 171.3, 139.6, 128.9, 124.5, 119.9, 60.5, 45.2, 43.8, 41.9, 30.3, 23.2, 14.2 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{15}H_{19}NO_3+H]^+$  262.1438, found 262.1443.

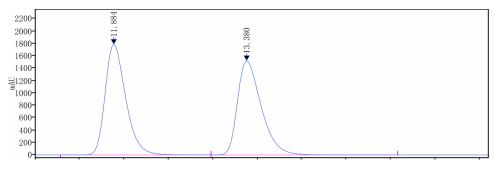
**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 95/5, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 20.0 min (minor),  $t_{R2}$  = 22.7 min (major).



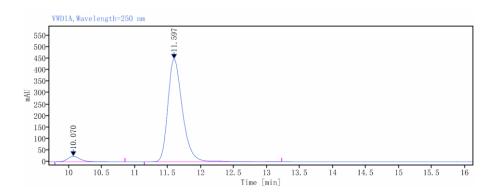
| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 49. 9887 | 470. 1118   | 12034. 1704 | 2.5150     | 19.707 BB         |
| 50. 0113 | 403. 9433   | 12039. 6325 | 3. 0333    | 22. 403 BB        |



| Area%    | Height[mAU] | Area[mAU*s] | ${\tt Width[min]}$ | RetTime[min] Type |
|----------|-------------|-------------|--------------------|-------------------|
| 4. 0458  | 52.8454     | 1314. 3136  | 0. 3842            | 20.053 MM m       |
| 95. 9542 | 991.6588    | 31171.4171  | 3.3400             | 22. 673 BB        |


### propyl (S)-2-(3-methyl-2-oxo-1-phenylpyrrolidin-3-yl)acetate (7h)

74% yield (20.3 mg), 95.5:4.5 er; Colorless oil;  $R_f = 0.4$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -5$  (c = 0.124, EA). **1H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 – 7.68 (m, 2H), 7.41 (dd, J = 8.7, 7.3 Hz, 2H), 7.17 – 7.15 (m, 1H), 4.08 (t, J = 6.7 Hz, 2H), 3.90 – 3.82 (m, 2H), 2.79 (d, J = 15.9 Hz, 1H), 2.65 (d, J = 16.0 Hz, 1H), 2.45 – 2.35 (m 1H), 2.11 – 2.03 (m, 1H), 1.67 (q, J = 7.1 Hz, 2H), 1.34 (s, 3H), 0.96 (t, J = 7.4 Hz, 3H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 177.1, 171.4, 139.6, 128.8, 124.5, 119.8, 66.2, 45.2, 43.8, 41.8, 30.4, 23.2, 22.0, 10.4 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{16}H_{21}O_3H]^+$  276.1594, found 276.1596.

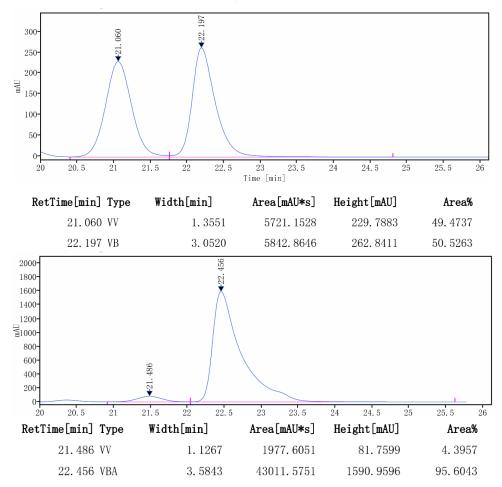
**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 90/10, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  =10.1 min (minor),  $t_{R2}$  = 11.6 min (major).



| RetTime[min] Type | Width[min] | Area[mAU*s] | <pre>Height[mAU]</pre> | Area%    |
|-------------------|------------|-------------|------------------------|----------|
| 11.884 BB         | 1.6957     | 28721.7668  | 1784. 7345             | 50. 5047 |
| 13.380 BB         | 2. 1010    | 28147.7207  | 1519. 1508             | 49. 4953 |



| Area%   | <pre>Height[mAU]</pre> | Area[mAU*s] | Width[min] | RetTime[min] Type |
|---------|------------------------|-------------|------------|-------------------|
| 4. 3470 | 23. 9581               | 310.0876    | 0.1980     | 10.070 MM m       |
| 95.6530 | 446.6558               | 6823. 2785  | 0. 2342    | 11.597 MM m       |


### 2-(trimethylsilyl)ethyl (S)-2-(3-methyl-2-oxo-1-phenylpyrrolidin-3-yl)acetate (7i)

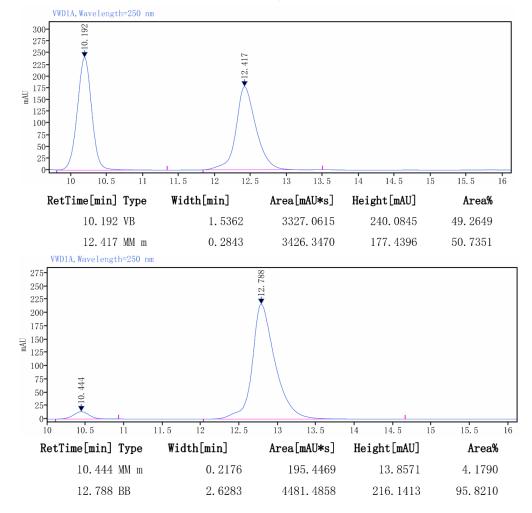
68% yield (22.6 mg), 95.5:4.5 er; Colorless oil;  $R_f = 0.6$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -48$  (c = 0.044, EA).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.70 (dt, J = 8.0, 1.1 Hz, 2H), 7.47 – 7.35 (m, 2H), 7.24 – 7.12 (m, 1H), 4.23 – 4.17 (m, 2H), 3.90 – 3.79 (m, 2H), 2.73 (s, 1H), 2.62 (d, J = 16.0 Hz, 1H), 2.45 – 2.40 (m, 1H), 2.08 (ddd, J = 12.8, 7.4, 3.9 Hz, 1H), 1.34 (s, 3H), 1.11 – 0.89 (m, 2H), 0.07 (s, 9H) ppm. <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 178.6, 173.0, 141.1, 130.3, 126.0, 121.3, 64.3, 46.7, 45.3, 43.4, 31.9, 24.7, 18.9, 0.0 ppm.

**HRMS** (ESI-TOF) calcd for [C<sub>18</sub>H<sub>27</sub>NO<sub>3</sub>Si+H]<sup>+</sup> 334.1833, found 334.1837.

**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 95/5, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 21.5 min (minor),  $t_{R2}$  = 22.5 min (major).




### pent-4-en-1-yl (S)-2-(3-methyl-2-oxo-1-phenylpyrrolidin-3-yl)acetate (7j)

74% yield (20.3 mg), 96:4 er; Colorless oil;  $R_f = 0.4$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -45$  (c = 0.04, EA). **1H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 – 7.68 (m, 2H), 7.44 – 7.38 (m, 2H), 7.31 – 7.19 (m, 1H), 5.81 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 5.17 – 4.97 (m, 1H), 4.13 (t, J = 6.6 Hz, 2H), 3.99 – 3.74 (m, 2H), 2.79 (d, J = 15.9 Hz, 1H), 2.66 (d, J = 15.9 Hz, 1H), 2.41 (dt, J = 12.9, 8.4 Hz, 1H), 2.23 – 2.00 (m, 2H), 1.76 (t, J = 7.4 Hz, 2H), 1.34 (s, 3H) ppm.

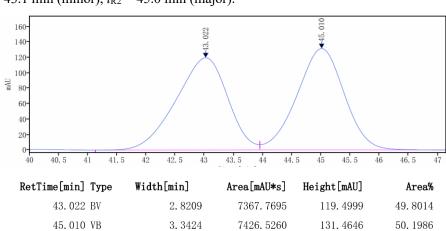
<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 177.0, 171.3, 139.6, 137.4, 128.8, 124.5, 119.8, 115.4, 64.0, 54.4, 45.2, 43.8, 41.8, 30.4, 27.7, 23.2 ppm.

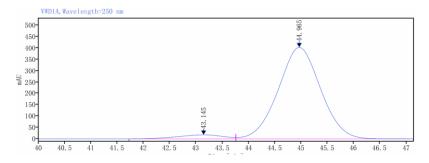
**HRMS** (ESI-TOF) calcd for  $[C_{18}H_{23}NO_3+H]^+$  302.1751, found 302.1750.

**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 90/10, flow rate = 1.0 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 10.4 min (minor),  $t_{R2}$  = 12.8 min (major).



### cyclopropyl (S)-2-(3-methyl-2-oxo-1-phenylpyrrolidin-3-yl)acetate (7k)


75% yield (20.5 mg), 95.5:4.5 er; Colorless oil;  $R_f = 0.6$  (PE/EA = 10/1);  $[\alpha]_D^{20} = -23$  (c = 0.048, EA).


<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.67 – 7.61 (m, 2H), 7.37 – 7.32 (m, 2H), 7.15 – 7.10 (m, 1H), 4.11 (dt, J = 6.4, 2.5 Hz, 1H), 3.87 – 3.70 (m, 2H), 2.68 (dd, J = 16.0, 1.3 Hz, 1H), 2.55 (dd, J = 16.0, 1.2 Hz, 1H), 2.33 (dt, J = 12.7, 8.4 Hz, 1H), 2.02 (m, 1H), 1.27 (s, 3H). 0.66 (dt, J = 5.3, 3.3 Hz, 4H) ppm.

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 176.8, 172.1, 139.5, 128.8, 124.5, 119.8, 48.9, 45.1, 43.7, 41.7, 30.3, 23.1, 5.0, 4.9 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{16}H_{19}NO_3+H]^+$  274.1438, found 274.1438.

**HPLC**: Daicel Chiralcel AD-H, *n*-hexane/isopropanol 95/5, flow rate = 0.5mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 43.1 min (minor),  $t_{R2}$  = 45.0 min (major).





| RetTime[min] Type | Width[min] | Area[mAU*s] | <pre>Height[mAU]</pre> | Area%    |
|-------------------|------------|-------------|------------------------|----------|
| 43.145 MM m       | 0. 9056    | 1082. 4778  | 17. 9247               | 4. 5669  |
| 44, 965, VB       | 4.3768     | 22620, 0560 | 401. 8514              | 95, 4331 |

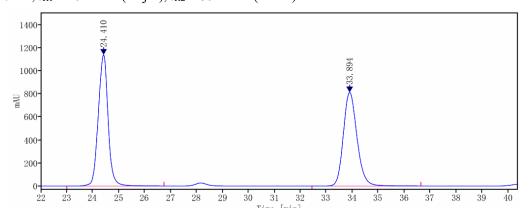
# 6. Further Study of the Reaction

Table S4 Condition Screening for phenylboronic acid

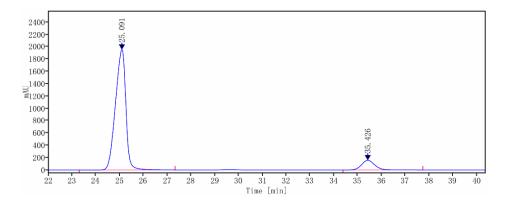
| Entry | [Pd]                               | Ligand    | Solvent | Yield of 3ac % | er of 3ac |
|-------|------------------------------------|-----------|---------|----------------|-----------|
| 1     | Pd(OAc) <sub>2</sub>               | L1        | PhCl    | trace          | -         |
| 2     | Pd(OAc) <sub>2</sub>               | L2        | PhCl    | n.d.           | -         |
| 3     | $Pd(OAc)_2$                        | L3        | PhCl    | n.d.           | -         |
| 4     | $Pd(OAc)_2$                        | <b>L4</b> | PhCl    | n.d.           | -         |
| 5     | Pd(OAc) <sub>2</sub>               | L5        | PhCl    | 42%            | 67.5:32.5 |
| 6     | Pd(OAc) <sub>2</sub>               | L6        | PhCl    | trace          | -         |
| 7     | Pd(OAc) <sub>2</sub>               | L7        | PhCl    | 38             | 70.5:29.5 |
| 8     | Pd(OAc) <sub>2</sub>               | L8        | PhCl    | 65             | 79:21     |
| 9     | Pd(OAc) <sub>2</sub>               | L5        | THF     | 55             | 91:9      |
| 10    | Pd(OAc) <sub>2</sub>               | L5        | EA      | 7              | 70:30     |
| 11    | $Pd(OAc)_2$                        | L5        | PhMe    | trace          | 76.5:23.5 |
| 12    | Pd(OAc) <sub>2</sub>               | L5        | MeCN    | 52             | 75:25     |
| 13    | Pd(OAc) <sub>2</sub>               | L5        | Acetone | 43             | 86.5:13.5 |
| 14    | Pd(dba) <sub>2</sub>               | L5        | THF     | 56             | 67.5:32.5 |
| 15    | Pd <sub>2</sub> (dba) <sub>3</sub> | L5        | THF     | 49             | 66.5:33.5 |
| 16    | Pd(dba) <sub>2</sub>               | L5        | THF     | 52             | 70:40     |

a) Reaction conditions: **1a** (0.1 mmol), PhB(OH)<sub>2</sub> (0.3 mmol), [Pd] (10 mol %), L (20 mol %), K<sub>2</sub>HPO<sub>4</sub> (0.3 mmol) in 1.0 mL solvent, 80 °C (oil bath temperature), 30 h, CO balloon. b) Isolated yields are given. c) Determined by HPLC analysis. n.d. = Not determined.

### (S)-1-methyl-3-(2-oxo-2-phenylethyl)-3-phenylindolin-2-one (3ab)


55% yield (18.8 mg); 91:9 er; White solid; m.p. 102 - 104 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -53$  (c = 0.1, EA).

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>) δ 7.90 – 7.82 (m, 2H), 7.55 – 7.27 (m, 10H), 7.07 (td, J = 7.5, 1.0 Hz, 1H), 6.97 (dd, J = 7.7, 1.0 Hz, 1H), 4.29 – 3.94 (m, 2H), 3.32 (s, 3H) ppm.


<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 195.8, 178.6, 144.8, 139.6, 136.4, 133.3, 131.6, 128.7, 128.6, 128.4, 128.0, 127.6, 126.8, 124.1, 122.2, 108.5, 53.1, 47.0, 26.8 ppm.

**HRMS** (ESI-TOF) calcd for  $[C_{23}H_{19}NO_2+H]^+$  342.1489, found 342.1492.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 70/30, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 25.1 min (major),  $t_{R2}$  = 35.4 min (minor).



| RetTime[min] | Type | Width[min] | Area[mAU*s] | Height[mAU] | Area%    |
|--------------|------|------------|-------------|-------------|----------|
| 24. 410      | MM m | 0.4075     | 29877. 7611 | 1140. 9845  | 50. 1359 |
| 33.894       | MM m | 0.5654     | 29715.8172  | 815. 0046   | 49.8641  |



| RetTime[min] | Type | Width[min] | Area[mAU*s] | Height[mAU] | Area%   |
|--------------|------|------------|-------------|-------------|---------|
| 25. 091      | MM m | 0.4806     | 59046. 1876 | 1953. 8368  | 90.6514 |
| 35. 426      | MM m | 0. 5896    | 6089. 2304  | 158. 0127   | 9.3486  |

An oven-dried 350 mL Schlenk tube was charged with the substrate 1a (0.951 g, 3.5 mmol), Pd(OAc)<sub>2</sub> (39.3 mg, 5 mol %), L1 (203.9 mg, 10 mol %), and K<sub>2</sub>HPO<sub>4</sub> (1.829 g, 10.5 mmol). The vial is thoroughly flushed with CO, and MeOH (424  $\mu$ L, 10.5 mmol), as well as PhCl/acetone (9/1, 35 mL) was added under balloon pressure of CO. Then the reaction mixture was stirred at room temperature for 30 seconds, then raise to 80 °C (oil bath temperature) for 36 h with stirring. After the reaction vessel was cooled to room temperature, the reaction mixture was diluted with EA (50 mL) and filtered through a plug of celite. The solution was concentrated under reduced pressure and purified by flash column chromatography on silica gel (PE/EA = 5/1) to afford the desired product 3a in 98% yield (1.012 g).

An oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with **3a** (59.1 mg, 0.2 mmol) and 9-BBN (4 mL, 0.5 M in THF, 2 mmol). The tube was evacuated and back-filled with argon three times. The tube sealed tightly with a stopper,

and the reaction mixture was heated at 65 °C (oil bath temperature) for 18 h with stirring. After cooling the tube, the mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (PE/EA = 4/1) to afford the desired product 8 in 95% yield (48.1 mg).

To a solution of 3a (59.1 mg, 0.2 mmol) in 0.75 mL of MeOH, was added a solution of NaOH (40 mg, 1 mmol) in water (0.25 mL). The mixture was stirred at 50 °C (oil bath temperature) for 1.5 h. After cooling to 0 °C, the mixture was treated with an aqueous solution of 1 N HCl to pH = 1 and extracted with EA (3×10 mL). The combined organic layers were washed with brine (15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtrated, and evaporated to dryness under reduced pressure. The resultant crude product 9 was purified by flash column chromatography on silica gel using PE/EA 1:2, delivering product in 98% yield (54.9 mg).

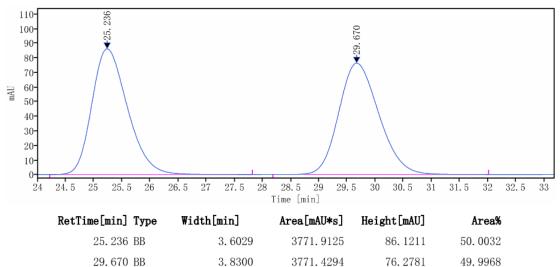
To a solution of **9** (56.3 mg, 0.2 mmol) and DIPEA (42  $\mu$ L, 0.24 mmol) in THF (1 mL), was added the Castros reagent (BOP) (106.2 mg, 0.24 mmol). The solution was stirred at r.t. for 10 min. Then NaBH<sub>4</sub> (3×7.6 mg, 3×0.2 mmol) was added every 5 min, the TLC method to detect the response process. Then the reaction solution was neutralized with 1 N HCl, and water was added to the reaction solution followed by extraction with chloroform. The obtained chloroform layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The resultant crude product was purified by flash column chromatography on silica gel using PE/EA = 2:1 to give **10** in 85% yield (45.2 mg).

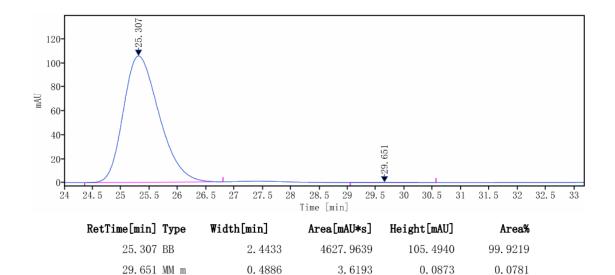
To a solution of 9 (56.3 mg, 0.2 mmol) and DIPEA (70  $\mu$ L, 0.4 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL), was added HATU (91.3 mg, 0.24 mmol) at room temperature. The resulting

solution was stirred for 30 min. Then aniline (20  $\mu$ L, 0.22 mmol) was added and the reaction mixture was stirred for another 24 h. The mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (PE/EA = 5/1) to afford the desired product 11 in 82% yield (58.2 mg).

To a solution of **9** (56.3 mg, 0.2 mmol) and SOCl<sub>2</sub> (0.1 mL, 1.38 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL), was added DMF (1 drop) at room temperature. Then the reaction mixture was allowed to 45 °C (oil bath temperature) for 1 h. The solvent was removed under reduced pressure; The another dichloromethane (8 mL) and aluminum chloride (AlCl<sub>3</sub>; 266.7 mg, 2 mmol) were added to the resulting mixture at 0 °C, followed by refluxing under heating for 6 h. After the completion of the reaction, the mixture was treated with ice water and then extracted twice with 10 mL of CH<sub>2</sub>Cl<sub>2</sub>. The combined organic phase was washed with water (10 mL) and saturated brine (10 mL), dried with Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure to give a crude product. The crude product was purified by flash column chromatography on silica gel (PE/EA = 6/1) to give **12** in 90% yield (47.6 mg).

An oven-dried 10 mL Schlenk tube was charged with the substrate 1q (0.024 g, 0.1 mmol), Pd(OAc)<sub>2</sub> (1.1 mg, 5 mol %), (R)-L1 (5.8 mg, 10 mol %), and K<sub>2</sub>HPO<sub>4</sub> (52.3 mg, 0.3 mmol). The vial is thoroughly flushed with CO, and MeOH (12  $\mu$ L, 0.3 mmol), as well as PhCl/acetone (9/1, 1 mL) was added under balloon pressure of CO. Then the reaction mixture was stirred at room temperature for 30 seconds, then raise to 80 °C (oil bath temperature) for 30 h with stirring. After the reaction vessel was cooled to room temperature, the reaction mixture was diluted with EA (10 mL) and filtered through a plug of celite. The solution was concentrated under reduced pressure and purified by flash column chromatography on silica gel (PE/EA = 4/1) to afford the desired product (S)-3q in 91% yield (24.0 mg).


To a solution of (S)-3q (26.3 mg, 0.1 mmol) in THF (2 mL), was added LiAlH<sub>4</sub> (11.4 mg, 0.3 mmol) at 0 °C. The resulting solution was stirred for 2 h at 0 °C. Then the reaction solution was neutralized with  $H_2O$ , and then extracted twice with 10 mL of EA. The combined organic phase was washed with saturated brine (10 mL), dried over  $Na_2SO_4$  and concentrated to give a crude product. The crude product was purified by flash column chromatography on silica gel (PE/EA = 10/1) to give 13 in 90% yield (40.1 mg).


### (S)-2-(1-methyl-3-phenylindolin-3-yl)ethan-1-ol (8)

95% yield (48.1mg); > 99% ee; Colorless oil;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -12$  (c = 0.23, EA). **1H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.43 – 7.40 (m, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.24 – 7.17 (m, 2H), 6.98 (d, J = 7.3 Hz, 1H), 6.85 – 6.80 (m, 1H), 6.67 (d, J = 7.9 Hz, 1H), 3.63 – 3.56 (m, 2H), 3.35 – 3.27 (m, 2H), 3.11 (br, 1H), 2.78 (s, 3H), 2.64 – 2.54 (m, 1H), 2.15 (dt, J = 13.9, 4.8 Hz, 1H) ppm. **13C NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$  153.0, 146.3, 134.9, 128.4, 128.2, 126.9, 126.5, 124.8, 119.5, 109.1, 70.8, 60.3, 51.5, 42.4, 36.5 ppm.

**HRMS** (ESI-TOF) calcd for [C<sub>17</sub>H<sub>19</sub>NO+H]<sup>+</sup> 254.1545, found 254.1543.

**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 95/5, flow rate = 1 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 25.3 min (major),  $t_{R2}$  =29.7 min (minor).

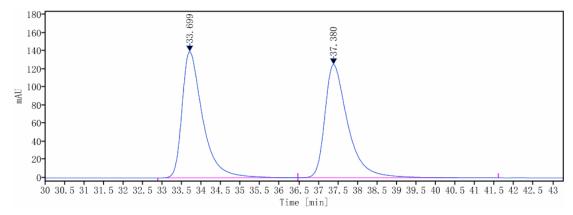




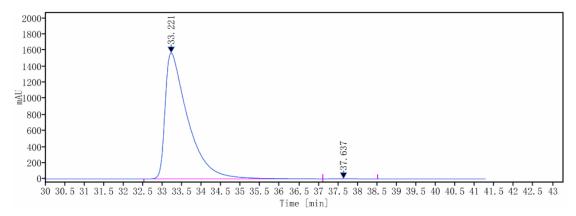
### (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)acetic acid (9)

98% yield (54.9 mg); White solid; m.p. 164 - 166 °C;  $R_f = 0.5$  (EA);  $[\alpha]_D^{20} = -117$  (c = 0.22, EA). <sup>1</sup>**H NMR** (300 MHz, DMSO- $d_6$ )  $\delta$  12.18 (s, 1H), 7.40 – 7.20 (m, 7H), 7.08 – 7.03 (m, 2H), 3.36 (s, 2H), 3.14 (s, 3H) ppm.

<sup>13</sup>C **NMR** (75 MHz, DMSO- $d_6$ ) δ 178.0, 171.3, 144.8, 140.5, 132.4, 129.0, 128.7, 127.7, 126.8, 124.5, 122.5, 109.0, 53.4, 41.4, 26.9 ppm.


### (S)-3-(2-hydroxyethyl)-1-methyl-3-phenylindolin-2-one (10)

85% yield (45.2 mg); > 99% ee; White solid; m.p. 80 - 82 °C;  $R_f = 0.1$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -42$  (c = 0.18, EA).


<sup>1</sup>**H NMR** (300 MHz, DMSO- $d_6$ )  $\delta$  7.36 – 7.21 (m, 7H), 7.09 (t, J = 6.9 Hz, 2H), 4.48 (t, J = 5.2 Hz, 1H), 3.15 – 3.01 (m, 5H), 2.53 – 2.35 (m, 2H) ppm.

<sup>13</sup>C **NMR** (75 MHz, DMSO-*d*<sub>6</sub>) δ 178.0, 144.0, 141.2, 132.2, 128.9, 128.6, 127.5, 126.9, 124.8, 122.8, 109.2, 57.7, 54.6, 39.8, 26.6 ppm.

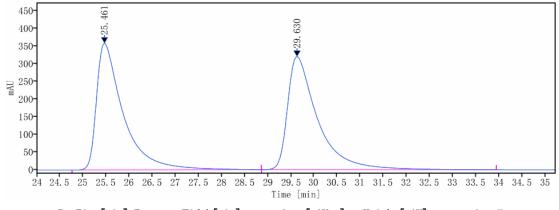
**HPLC**: Daicel Chiralcel IA-3, *n*-hexane/isopropanol 90/10, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 33.2 min (major),  $t_{R2}$  =37.6 min (minor).



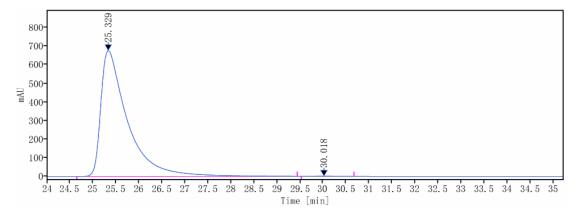
| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |  |
|----------|-------------|-------------|------------|-------------------|--|
| 49. 9384 | 139. 5143   | 5109. 4003  | 3, 5817    | 33.699 BB         |  |
| 50.0616  | 125.0524    | 5122.0145   | 5. 1300    | 37.380 BB         |  |



| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 99. 9144 | 1569.8271   | 63344. 4978 | 4. 5817    | 33.221 BB         |
| 0.0856   | 1.5210      | 54, 2771    | 0.5313     | 37.637 MM m       |


### (S)-2-(1-methyl-2-oxo-3-phenylindolin-3-yl)-N-phenylacetamide (11)

82% yield (58.2 mg); > 99% ee; White solid; m.p. 176 – 178 °C;  $R_f = 0.3$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -48$  (c = 0.26, EA).


<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.62 (s, 1H), 7.37 - 7.35 (m, 2H), 7.31 - 7.24 (m, 7H), 7.17 (t, J = 7.7 Hz, 2H), 7.07 (t, J = 7.5 Hz, 1H), 6.99 (t, J = 7.3 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 3.45 (d, J = 15.3 Hz, 1H), 3.24 (s, 3H), δ 3.19 (d, J = 15.3 Hz, 1H) ppm.

<sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>) δ 179.1, 167.1, 143.2, 139.1, 137.8, 131.8, 128.9, 128.8, 128.7, 127.8, 126.5, 124.6, 124.2, 123.2, 120.1, 108.8, 54.3, 45.0, 26.8 ppm.

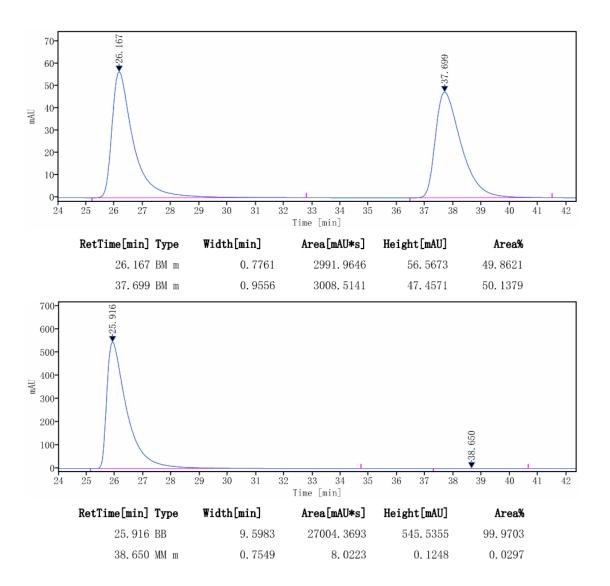
**HPLC**: Daicel Chiralcel IA-3, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 25.3 min (major),  $t_{R2}$  =30.0 min (minor).



| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 50.0010  | 358. 2492   | 14419. 8533 | 4. 1003    | 25. 461 BB        |
| 49. 9990 | 319.6730    | 14419. 2541 | 0.6542     | 29.630 BM m       |



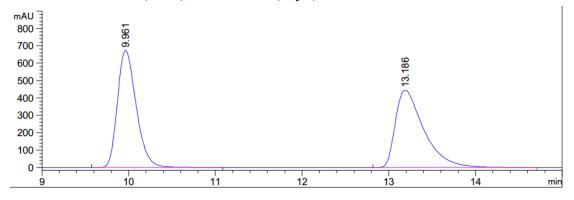
| Area%    | Height[mAU] | Area[mAU*s] | Width[min] | RetTime[min] Type |
|----------|-------------|-------------|------------|-------------------|
| 99. 9464 | 676. 2282   | 27218. 5595 | 0.5786     | 25.329 BM m       |
| 0.0536   | 0.3913      | 14.6049     | 0.4474     | 30.018 MM m       |


### (S)-1'-methylspiro[indene-1,3'-indolin]-3(2H)-one (12)

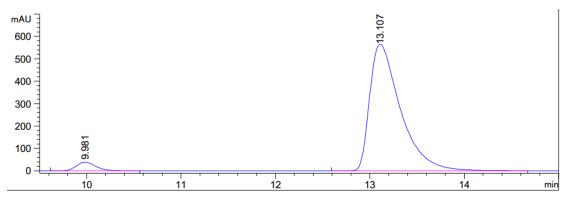
90% yield (47.6 mg); >99% ee; White solid; m.p. 190 – 192 °C;  $R_f = 0.4$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -50$  (c = 0.22, EA).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.85 (d, J = 7.4 Hz, 1H), 7.54 – 7.44 (m, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 7.00 – 6.95 (m, 3H), 3.33 (s, 3H), 3.08 (dd, J = 131.5, 18.6 Hz, 2H) ppm.

<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 203.5, 177.7, 154.5, 143.8, 136.5, 135.6, 132.6, 129.1, 129.0, 124.5, 124.1, 123.5, 123.3, 108.6, 54.2, 47.5, 26.9 ppm.


**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 80/20, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 25.9 min (major),  $t_{R2}$  = 38.7 min (minor).




### methyl (S)-2-(5-methoxy-1,3-dimethyl-2-oxoindolin-3-yl)acetate ((S)-3q)

91% yield (24.0 mg); 96:4 er;  $R_f = 0.1$  (PE/EA = 4/1);  $[\alpha]_D^{20} = -15$  (c = 0.15, EA);

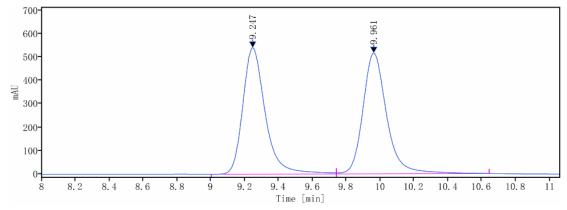
**HPLC**: Daicel Chiralcel OD-H, *n*-hexane/isopropanol 60/40, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 254 nm,  $t_{R1}$  = 10.0 min (minor),  $t_{R2}$  = 13.1 min (major).



| Peak | RetTime | Type | Width  | Area      | Height    | Area    |
|------|---------|------|--------|-----------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]     | ક       |
|      |         |      |        |           |           |         |
| 1    | 9.961   | VB   | 0.2317 | 1.01562e4 | 674.32428 | 49.9545 |
| 2    | 13.186  | RR   | 0.3425 | 1.01747e4 | 445.39276 | 50.0455 |



| Peak | RetTime | Type | Width  | Area      | Height    | Area    |
|------|---------|------|--------|-----------|-----------|---------|
| #    | [min]   |      | [min]  | [mAU*s]   | [mAU]     | 용       |
|      |         |      |        |           |           |         |
| 1    | 9.981   | BB   | 0.2242 | 550.03180 | 38.14199  | 4.1340  |
| 2    | 13.107  | BB   | 0.3393 | 1.27549e4 | 565.08789 | 95.8660 |


## (3aS,8aS)-5-methoxy-3a,8-dimethyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b] indole~(13)

91% yield (40.1 mg); 96:4 er; yellow oil;  $R_f = 0.8$  (PE/EA = 4/1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 6.70 – 6.64 (m, 2H), 6.29 (d, J = 8.2 Hz, 1H), 5.04 (s, 1H), 3.95 (ddd, J = 8.8, 7.1, 1.9 Hz, 1H), 3.75 (s, 3H), 3.47 (ddd, J = 10.8, 8.6, 5.5 Hz, 1H), 2.88 (s, 3H), 2.16 – 1.99 (m, 2H), 1.45 (s, 3H) ppm.

<sup>13</sup>C **NMR** (101 MHz, CDCl<sub>3</sub>) δ 152.7, 145.0, 136.0, 112.1, 110.5, 105.6, 105.3, 67.4, 56.1, 52.5, 41.5, 31.7, 24.5 ppm.

**HPLC**: Daicel Chiralcel IA-3, *n*-hexane/isopropanol 95/5, flow rate = 0.5 mL/min, uv-vis  $\lambda$  = 250 nm,  $t_{R1}$  = 9.2 min (minor),  $t_{R2}$  =10.0 min (major).



|          | RetTime[min] | Туре    | Width[min]      | Area[mAU*s]               | Height[mAU] | Area%             |
|----------|--------------|---------|-----------------|---------------------------|-------------|-------------------|
|          | 9. 247       | VM m    | 0. 1395         | 4967. 2094                | 538. 9905   | 49. 7442          |
|          | 9. 961       | MM m    | 0.1486          | 5018. 2917                | 515. 1522   | 50. 2558          |
| 1600     |              |         |                 |                           |             |                   |
| 1400-    |              |         |                 |                           | 9. 953      |                   |
| 1200-    |              |         |                 |                           | X           |                   |
| 1000-    |              |         |                 |                           |             |                   |
| MAU 800- |              |         |                 |                           |             |                   |
| 600-     |              |         |                 |                           |             |                   |
| 400-     |              |         | 4               |                           |             |                   |
| 200-     |              |         | <b>.</b> 9. 244 |                           |             |                   |
| 0        |              |         |                 |                           |             |                   |
| 8        | 8.2 8.4 8    | 3.6 8.8 | 9 9.2           | 9.4 9.6 9.8<br>Time [min] | 10 10.2     | 10.4 10.6 10.8 11 |
|          | RetTime[min] | Туре    | Width[min]      | Area[mAU*s]               | Height[mAU] | Area%             |
|          | 9. 244       | MM m    | 0. 1360         | 527. 5895                 | 59. 7672    | 4. 1955           |
|          | 9. 953       | MM m    | 0. 1500         | 12047. 5810               | 1222. 3993  | 95. 8045          |

# 7. Crystal Structure of 3a and 7d

$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

ORTEP plot of the crystal structure of 3a (50% ellipsoid probability)

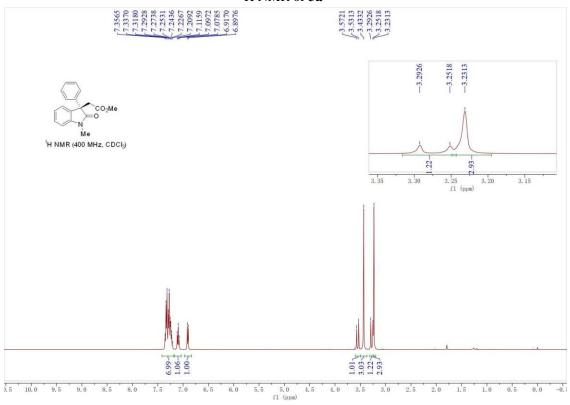
## X-ray crystallographic data of 3a

| CCDC number                            | 1999951                                         |
|----------------------------------------|-------------------------------------------------|
| Empirical formula                      | C <sub>18</sub> H <sub>17</sub> NO <sub>3</sub> |
| Formula weight                         | 295.32                                          |
| Temperature                            | 100 K                                           |
| Wavelength                             | 1.54178 Å                                       |
| Space group                            | P 21 21 21                                      |
| Unit cell dimensions                   | a=9.0567(8) Å =90°                              |
|                                        | b=12.5609(12) Å =90°                            |
|                                        | c=29.017(3) Å =90°                              |
| Volume                                 | 3300.9(5) Å                                     |
| Z                                      | 8                                               |
| F(000)                                 | 1248.0                                          |
| Completeness to theta = 68.347°        | 1.75/0.99                                       |
| Max. and min. transmission             | 0.753 and 0.665                                 |
| R indices (all data)                   | R= 0.0279(5733)                                 |
|                                        | wR2(reflections)= 0.0731(6021)                  |
| S                                      | 1.046                                           |
| ellipsoid contour % probability levels | 50                                              |

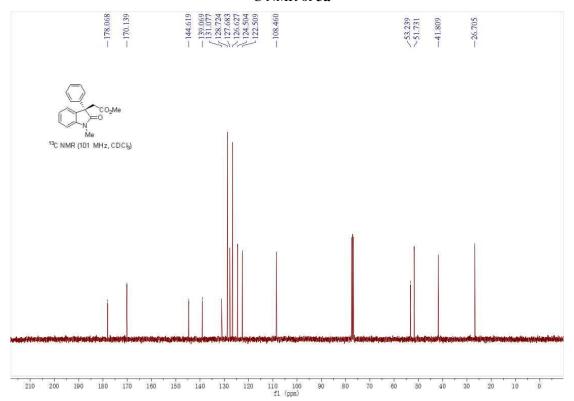
**7d** CCDC 2047030

## ORTEP plot of the crystal structure of 7d (50% ellipsoid probability)

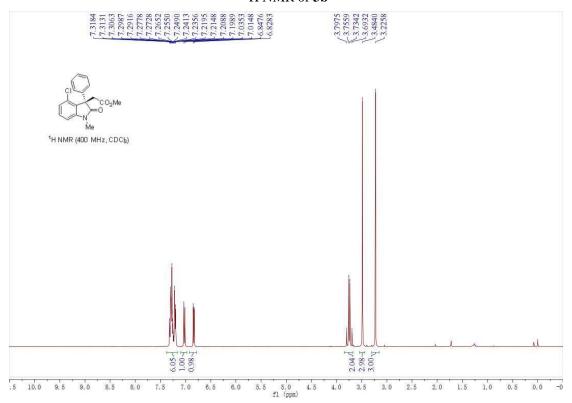
## X-ray crystallographic data of 7d


| CCDC number                              | 2047030                        |
|------------------------------------------|--------------------------------|
| Empirical formula                        | $C_{15}H_{16}F_3NO_3$          |
| Formula weight                           | 315.29                         |
| Temperature                              | 150 K                          |
| Wavelength                               | 1.54178 Å                      |
| Space group                              | P 21 21 21                     |
| Unit cell dimensions                     | a=10.3719 (4) Å =90°           |
|                                          | b=19.0789 (8) Å =90°           |
|                                          | c=22.6118 (9) Å =90°           |
| Volume                                   | 4474.5(3) Å                    |
| Z                                        | 12                             |
| F(000)                                   | 1968.0                         |
| Completeness to theta = $68.347^{\circ}$ | 1.72/0.96                      |
| Max. and min. transmission               | 0.959 and 0.904                |
| R indices (all data)                     | R= 0.0594(6458)                |
|                                          | wR2(reflections)= 0.1653(8774) |
| S                                        | 1.059                          |
| ellipsoid contour % probability levels   | 50                             |

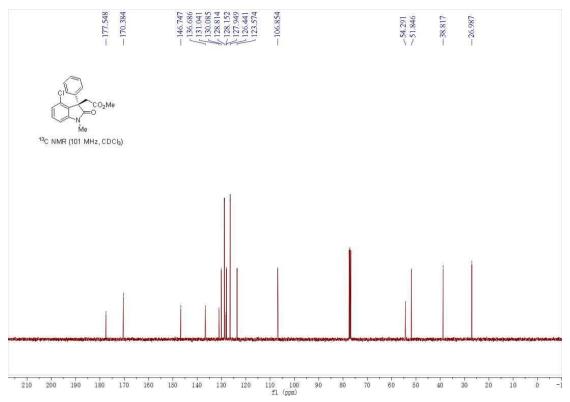
## 8. References


- [1] A. Whyte, K. I. Burton, J. Zhang, M. Lautens, *Angew. Chem. Int. Ed.* **2018**, *57*, 13927-13930; *Angew. Chem.* **2018**, *130*, 14123-14126.
- [2] P. Fan, Y. Lan, C. Zhang, C. Wang, J. Am. Chem. Soc. 2020, 142, 2180-2186.
- [3] C. Miao, L. Jiang, L. Ren, Q. Xue, F. Yan, W. Shi, X. Li, J. Sheng, S. Kai, *Tetrahedron* **2019**, *75*, 2215-2228.
- [4] C. Chen, J. Hu, J. Su, X. Tong, Tetrahedron Lett. 2014, 55, 3229-3231.

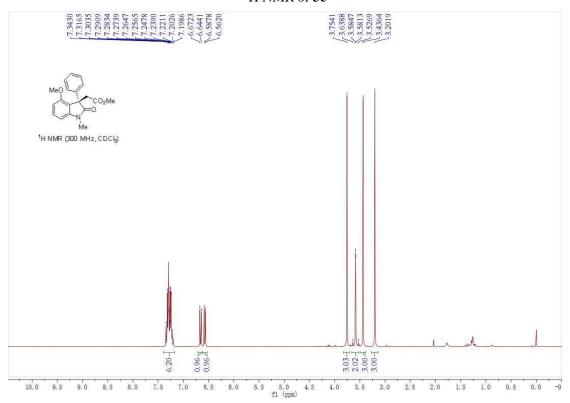
# 9. NMR Spectra


<sup>1</sup>H NMR of **3a** 

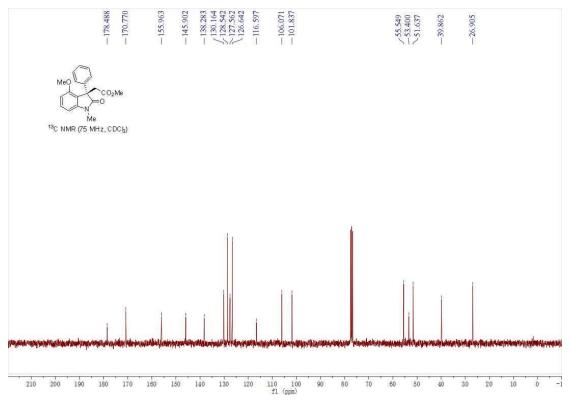



<sup>13</sup>C NMR of **3a** 

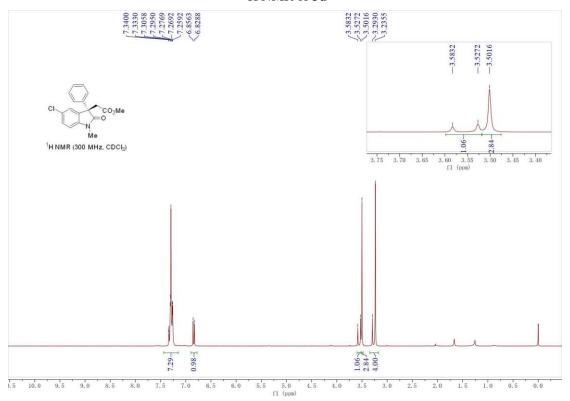



<sup>1</sup>H NMR of **3b** 

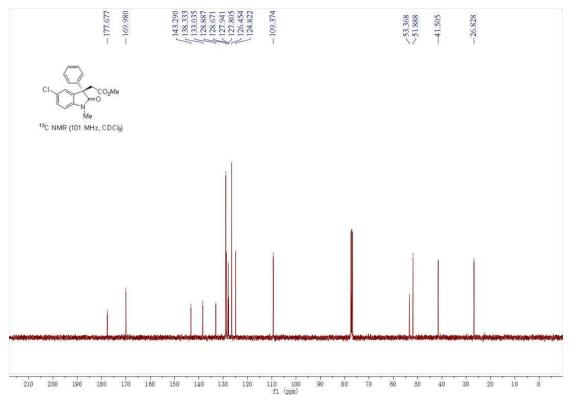



### <sup>13</sup>C NMR of **3b**

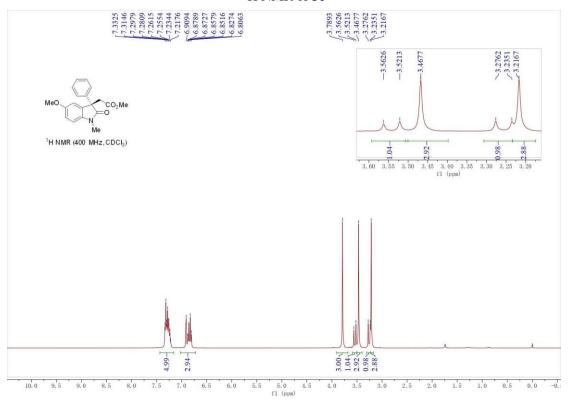


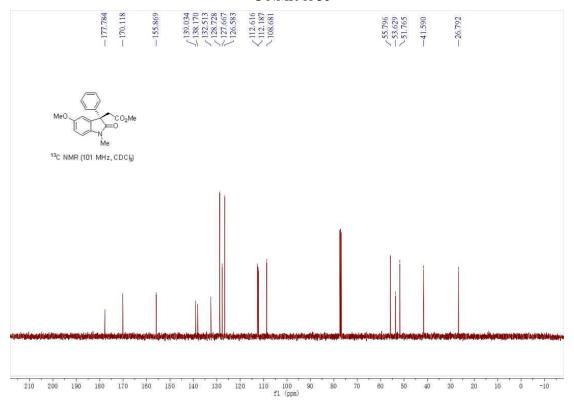

<sup>1</sup>H NMR of **3c** 



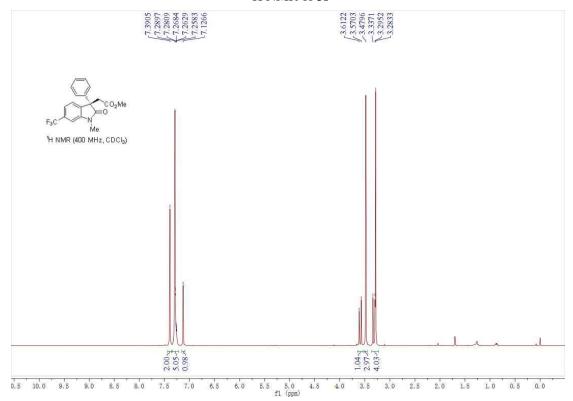

## <sup>13</sup>C NMR of **3c**



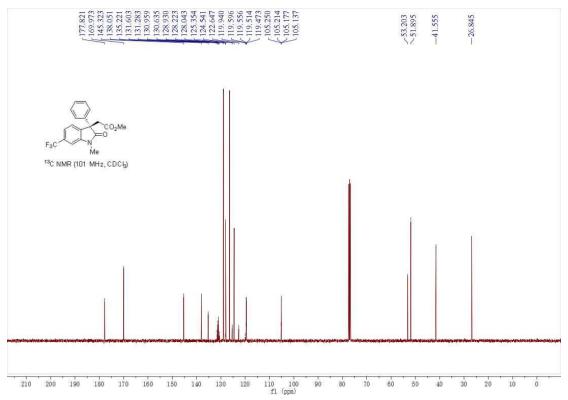

<sup>1</sup>H NMR of **3d** 



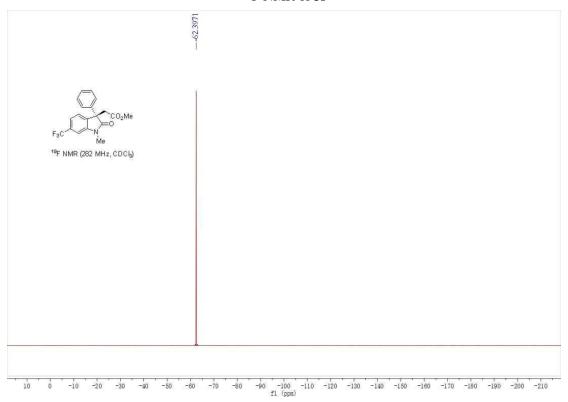

### <sup>13</sup>C NMR of **3d**



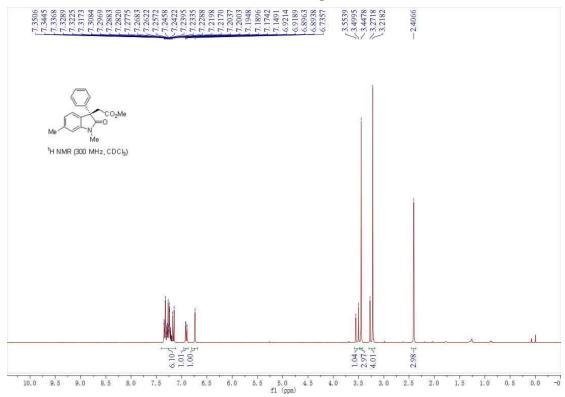

<sup>1</sup>H NMR of **3e** 

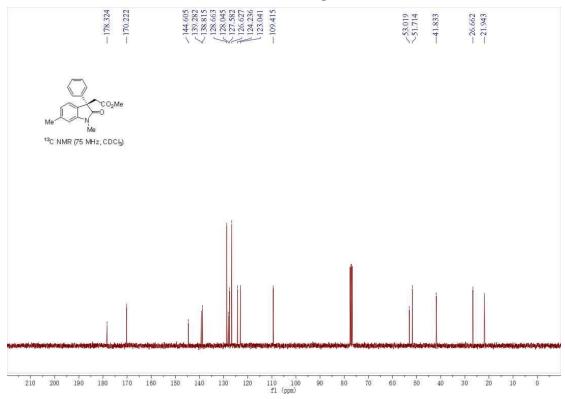




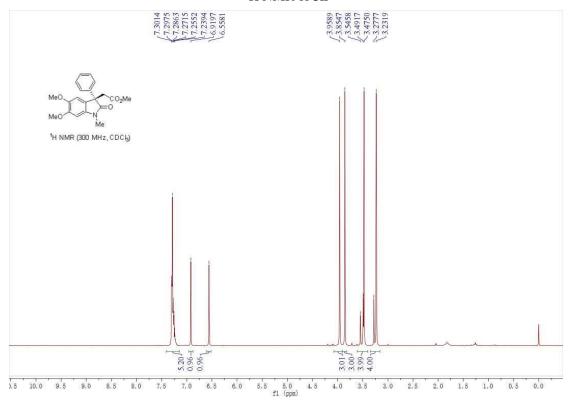


<sup>1</sup>H NMR of **3f** 

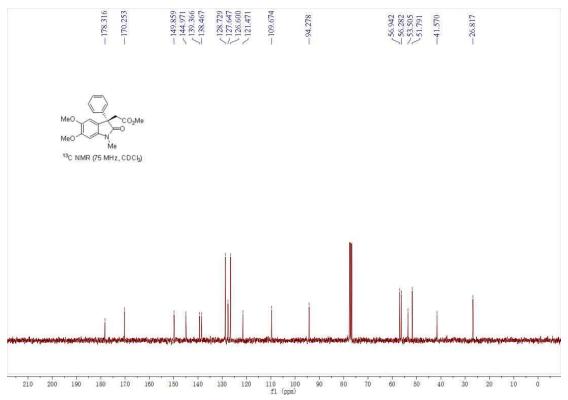



<sup>13</sup>C NMR of **3f** 

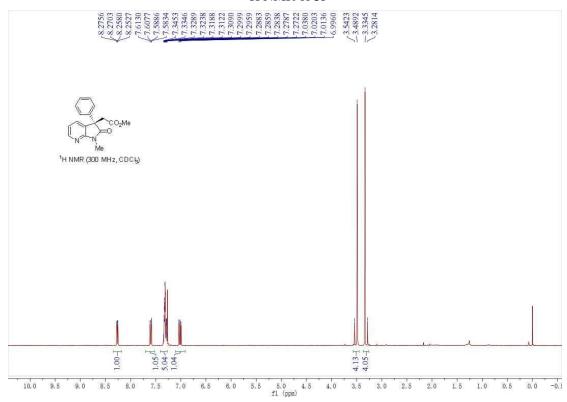



 $^{19}$ F NMR of  $\bf 3f$ 

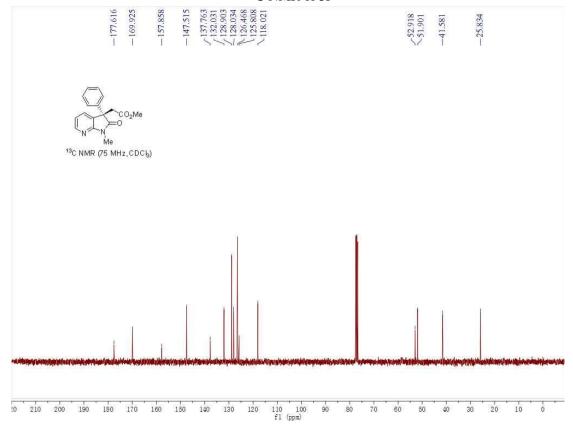




 $^{1}$ H NMR of 3g

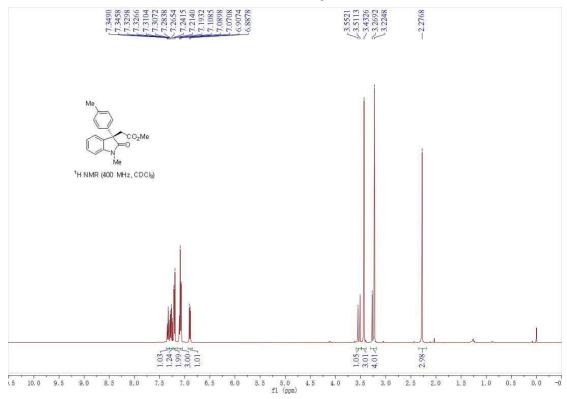


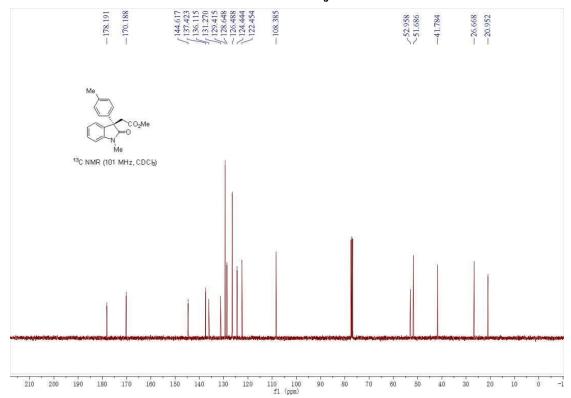



<sup>1</sup>H NMR of **3h** 

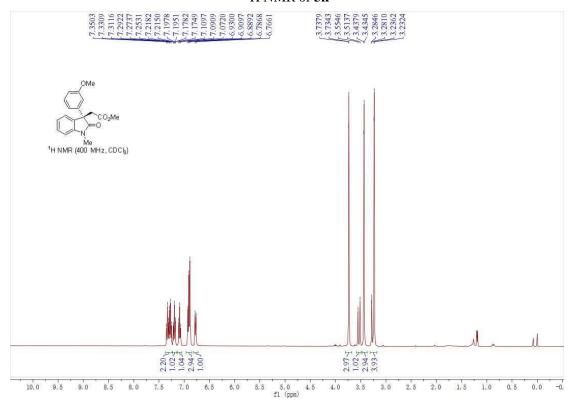


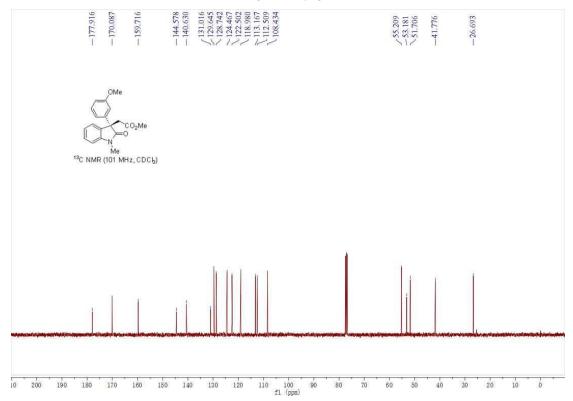




<sup>1</sup>H NMR of **3i** 

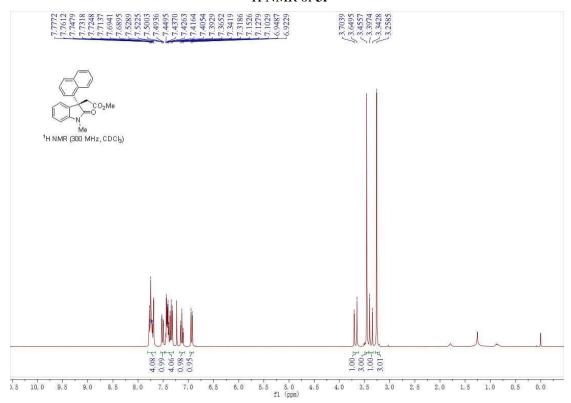


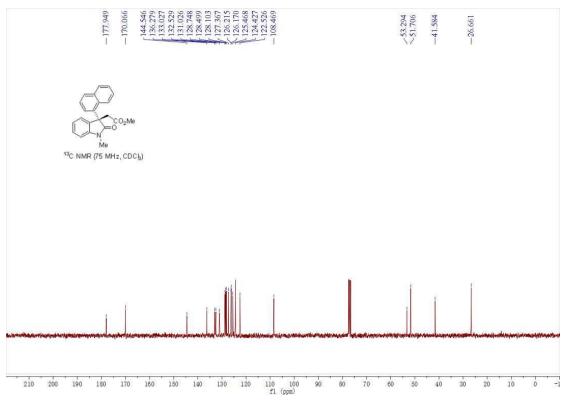


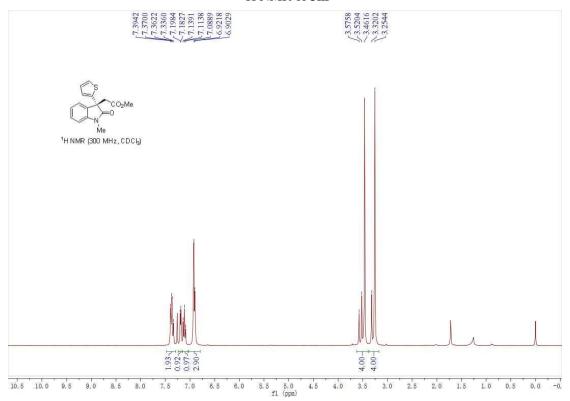


<sup>1</sup>H NMR of **3j** 

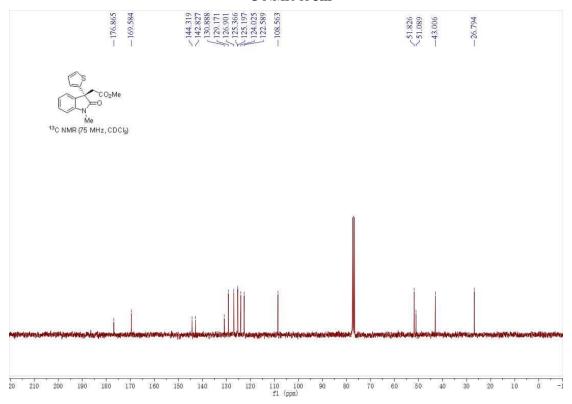




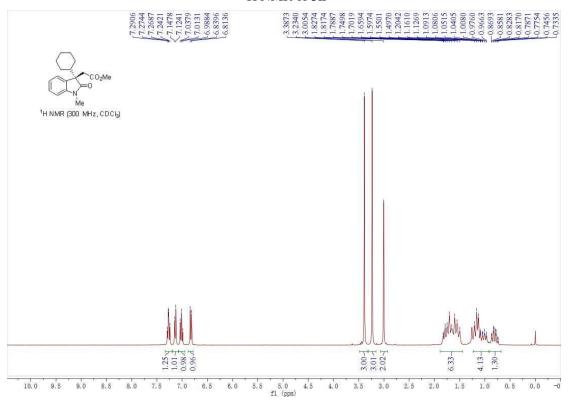


#### <sup>1</sup>H NMR of **3k**

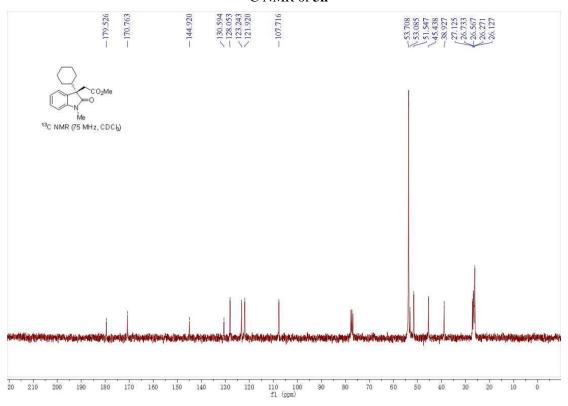




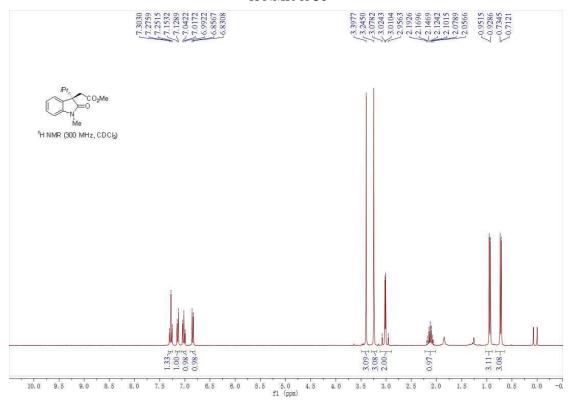


<sup>1</sup>H NMR of **31** 

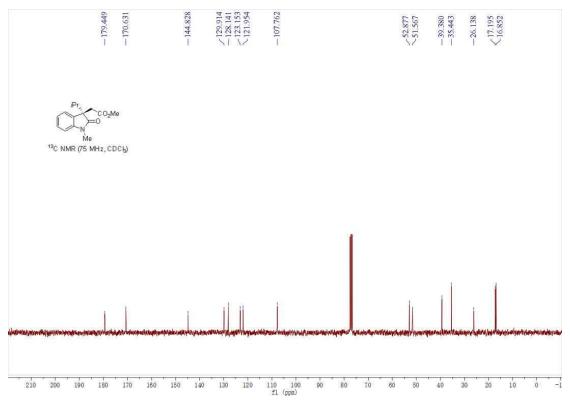




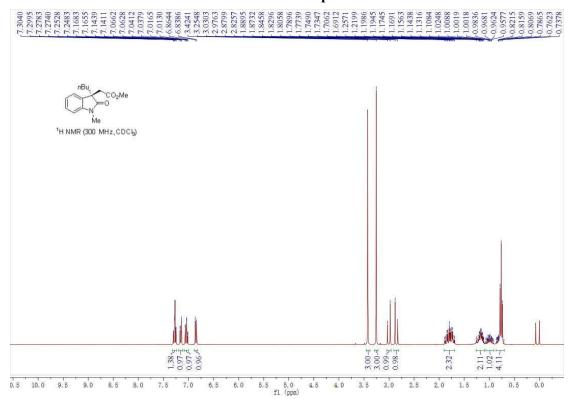


<sup>1</sup>H NMR of **3m** 



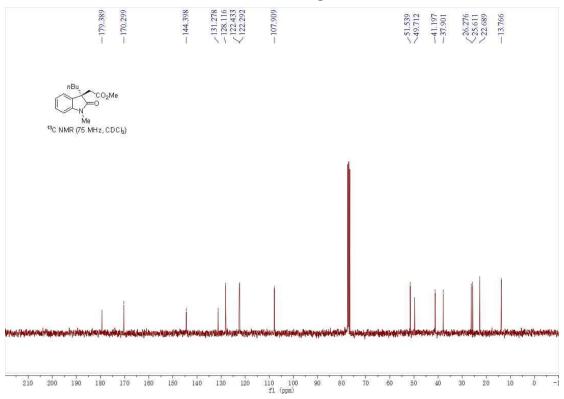




#### <sup>1</sup>H NMR of **3n**

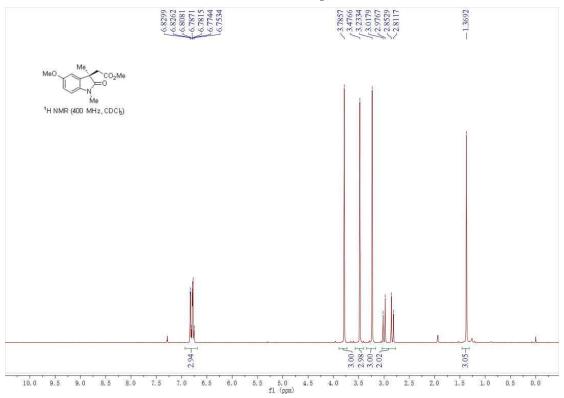




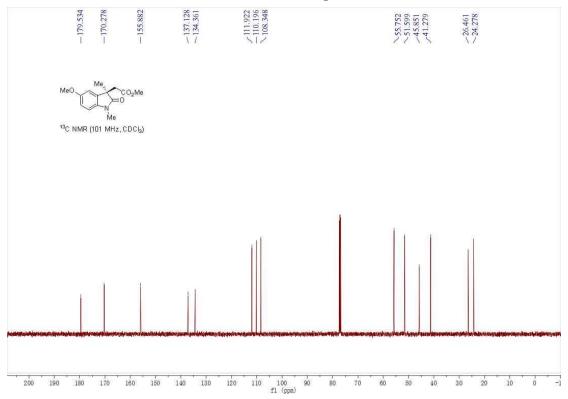

<sup>1</sup>H NMR of **30** 



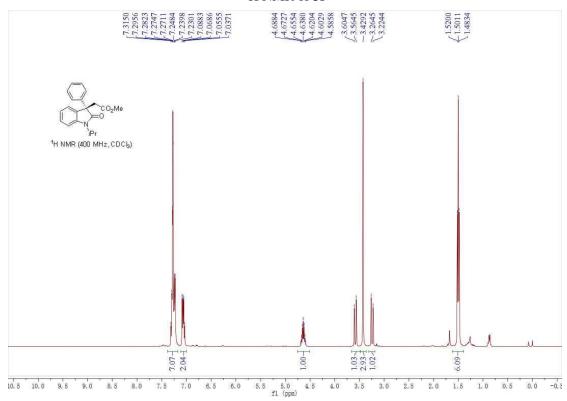


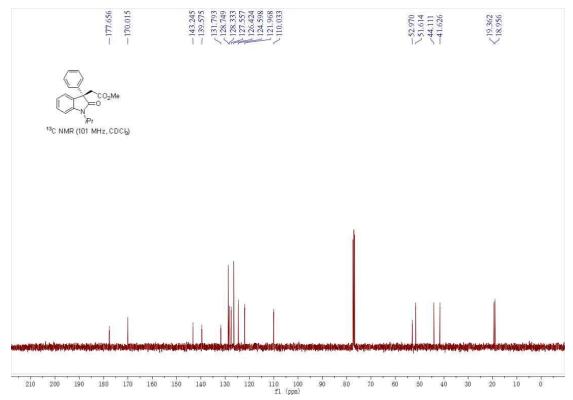


 $^{1}$ H NMR of 3p



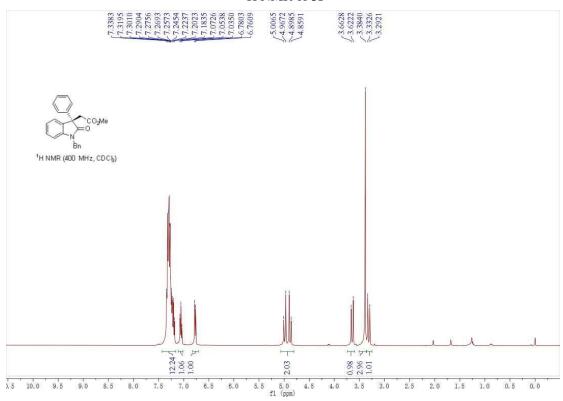

# $^{13}$ C NMR of 3p

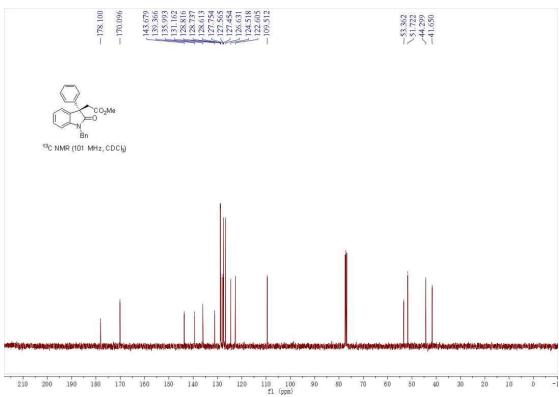



<sup>1</sup>H NMR of **3**q



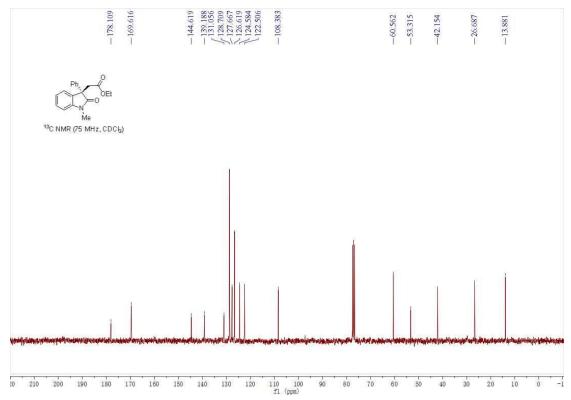

# $^{13}$ C NMR of 3q



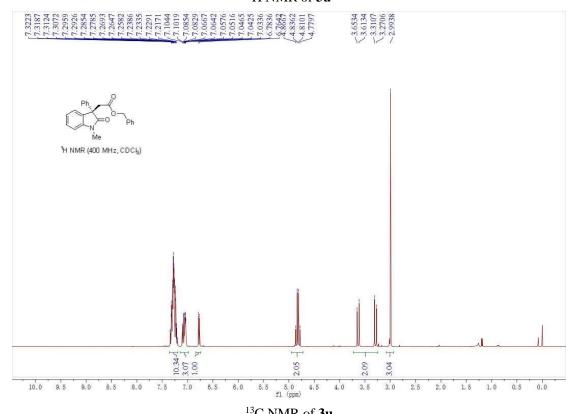


<sup>1</sup>H NMR of **3r** 

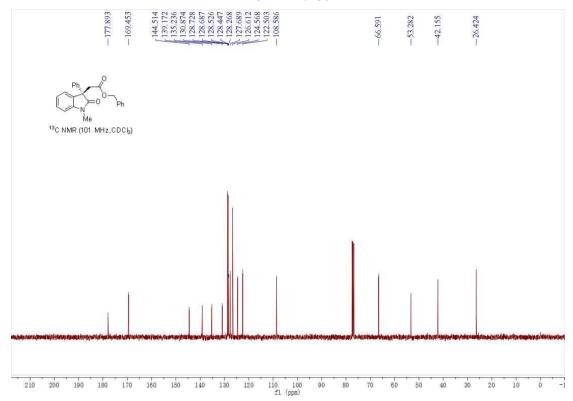




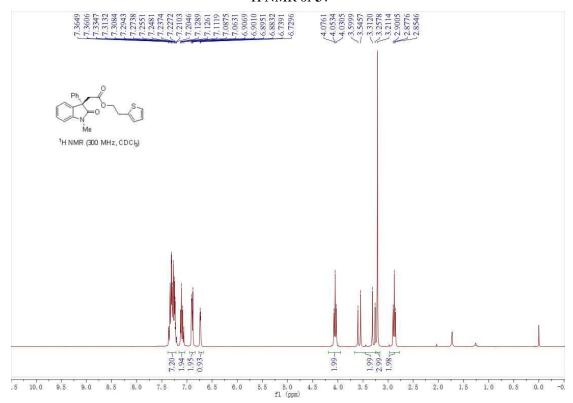

<sup>1</sup>H NMR of **3**s



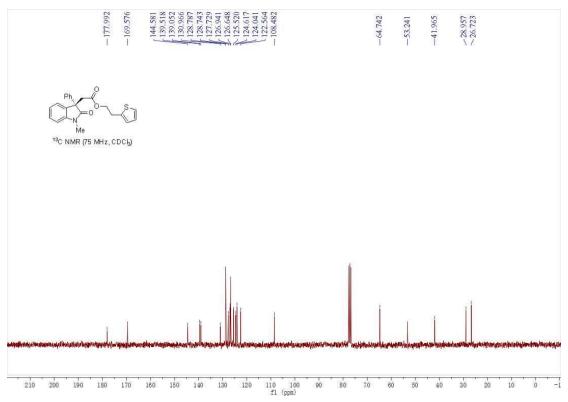




<sup>1</sup>H NMR of **3t** 

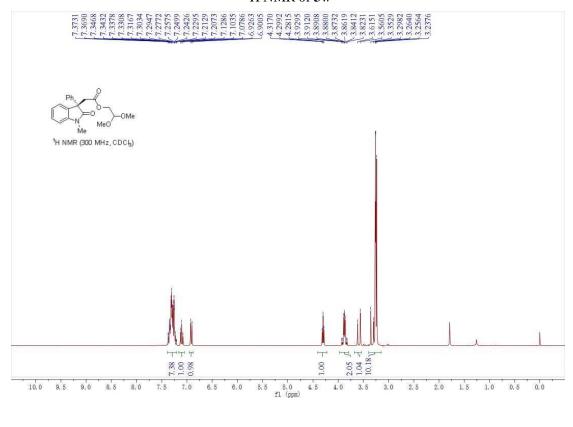


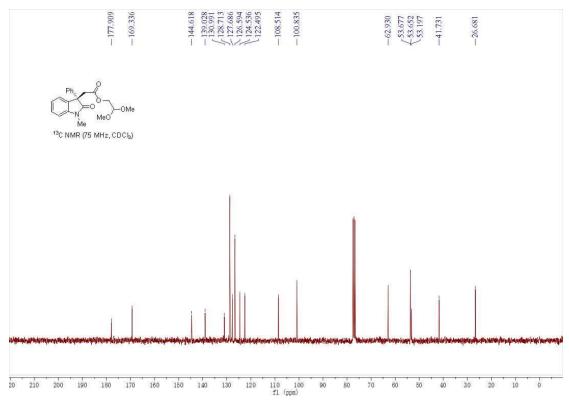



<sup>1</sup>H NMR of **3u** 

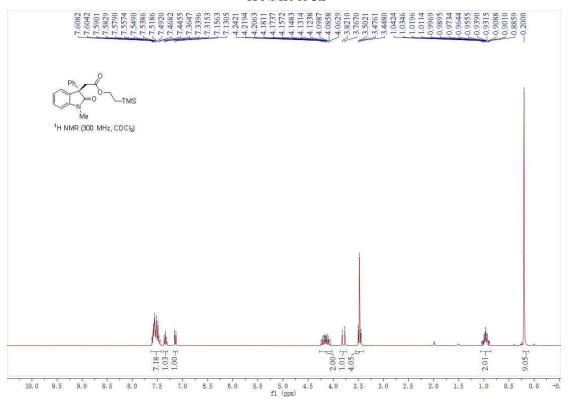




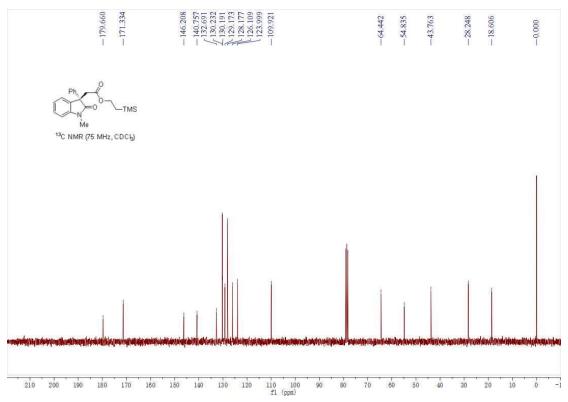


 $^{1}H$  NMR of 3v



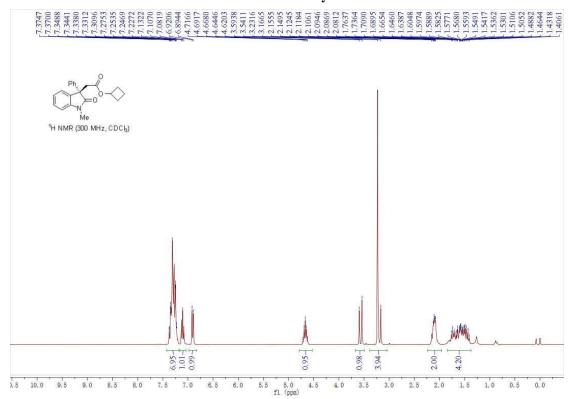

# $^{13}$ C NMR of 3v

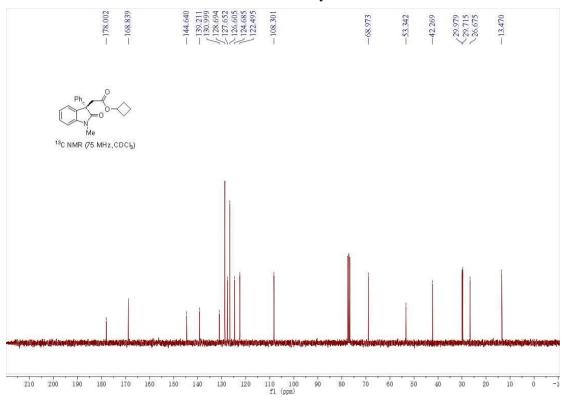



<sup>1</sup>H NMR of **3w** 

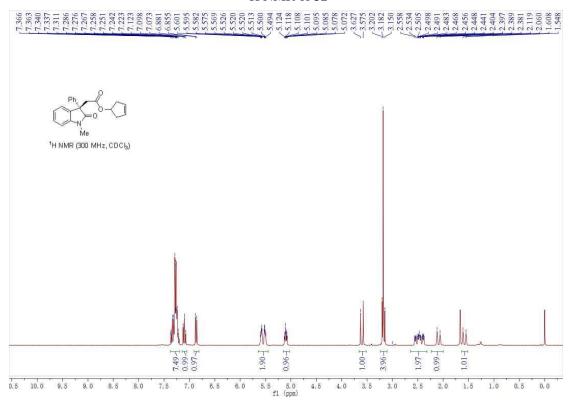


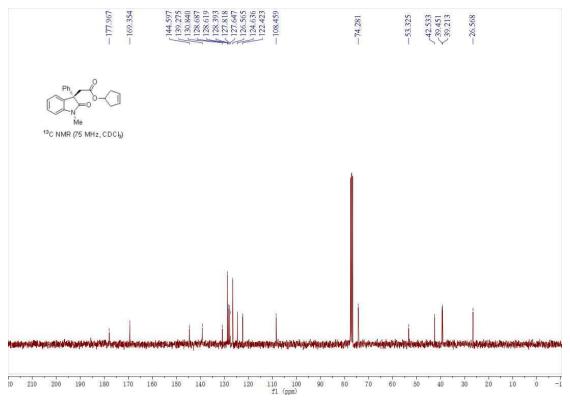




 $^{1}H$  NMR of 3x

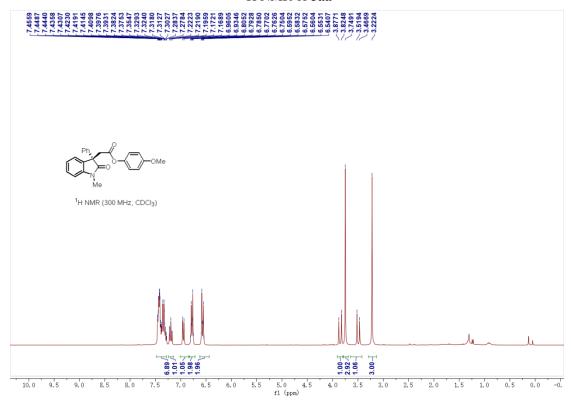


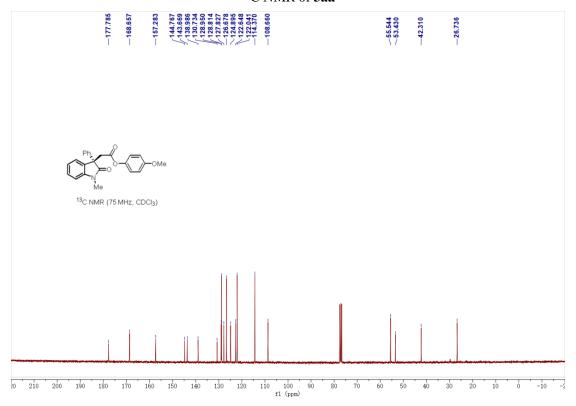

#### $^{13}$ C NMR of 3x



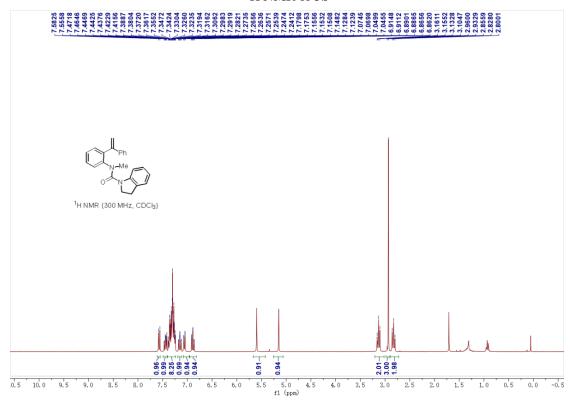


<sup>1</sup>H NMR of **3y** 



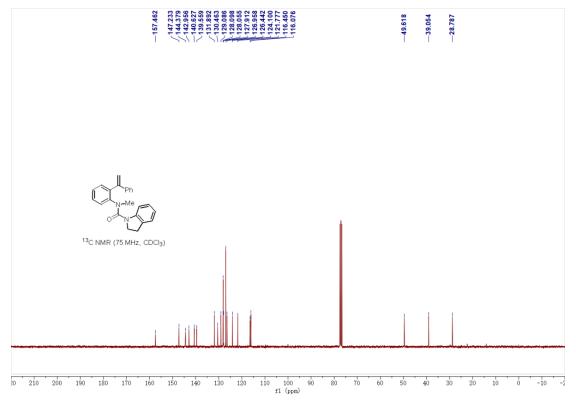




<sup>1</sup>H NMR of **3z** 

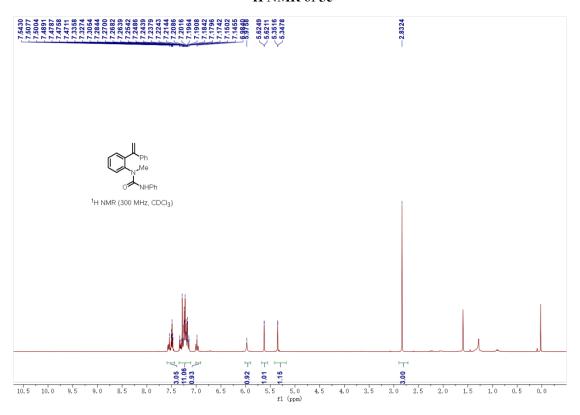




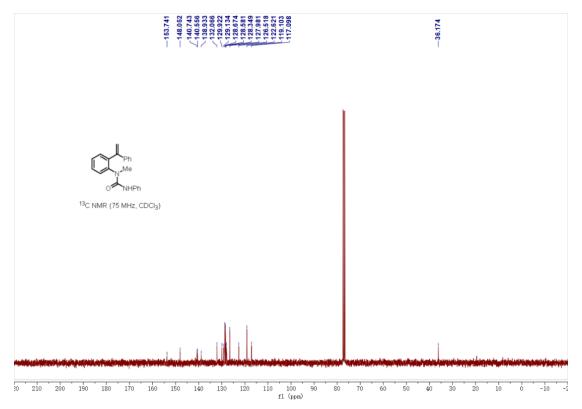

<sup>1</sup>H NMR of **3aa** 



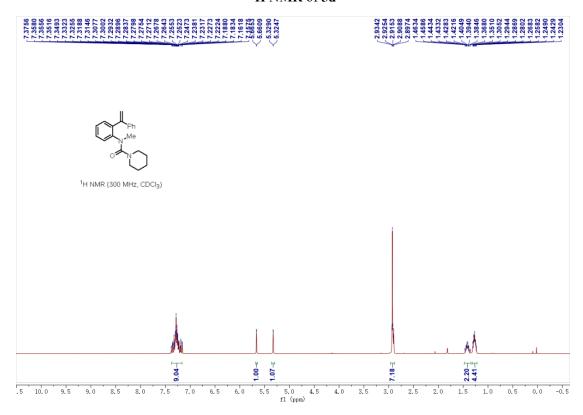


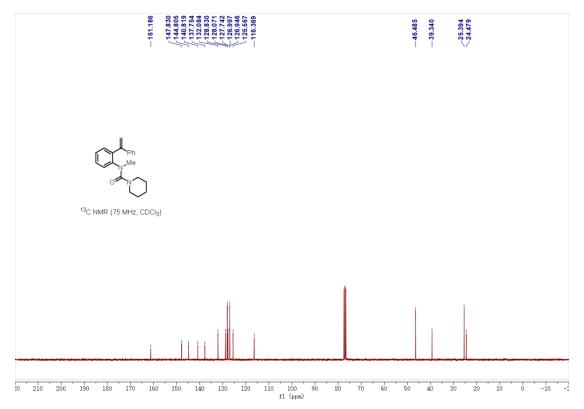


<sup>1</sup>H NMR of **5b** 



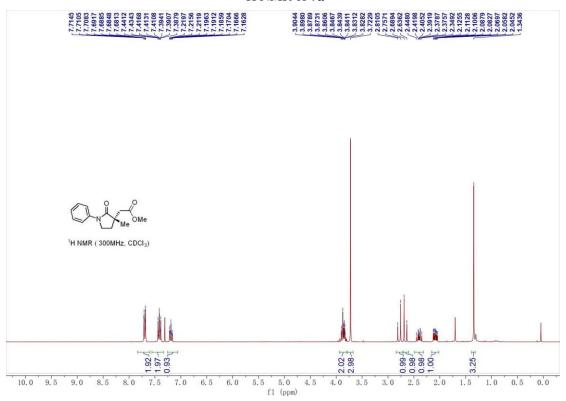

<sup>13</sup>C NMR of **5b** 

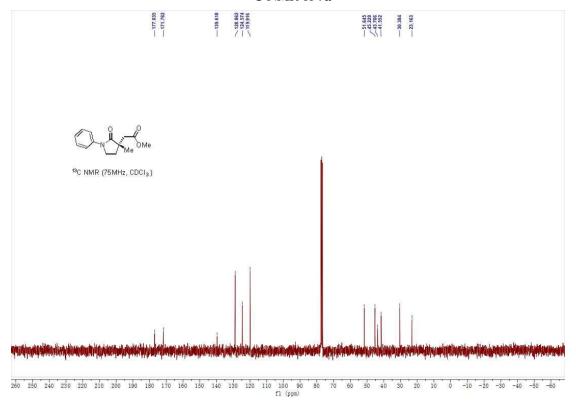



<sup>1</sup>H NMR of 5c

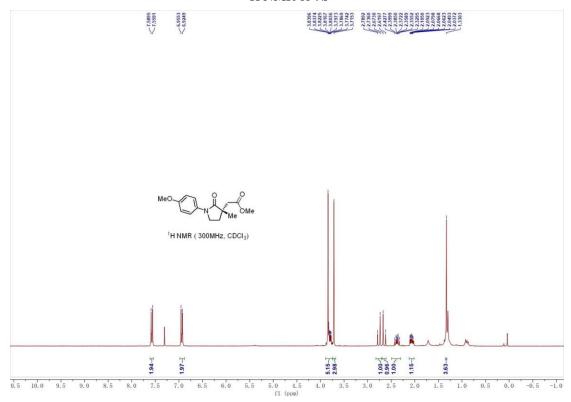


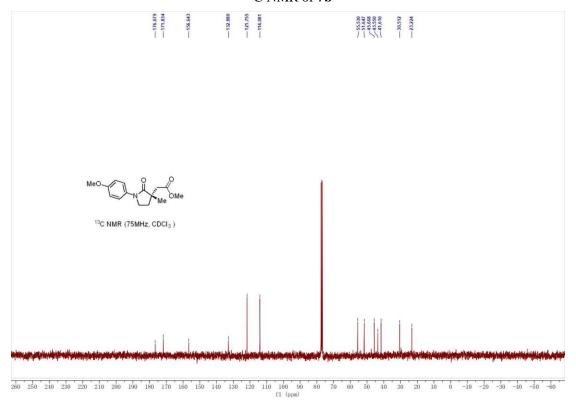

<sup>13</sup>C NMR of 5c





<sup>1</sup>H NMR of 5d



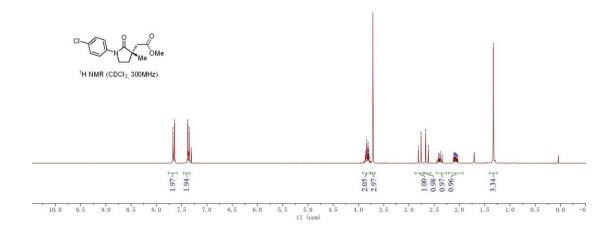




<sup>1</sup>H NMR of **7a** 



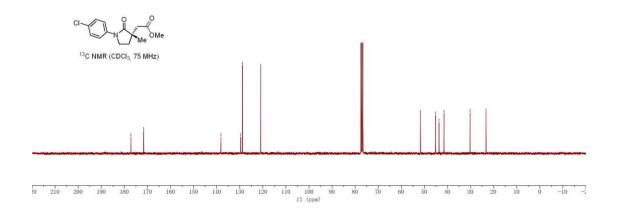


 $^{1}$ H NMR of 7b

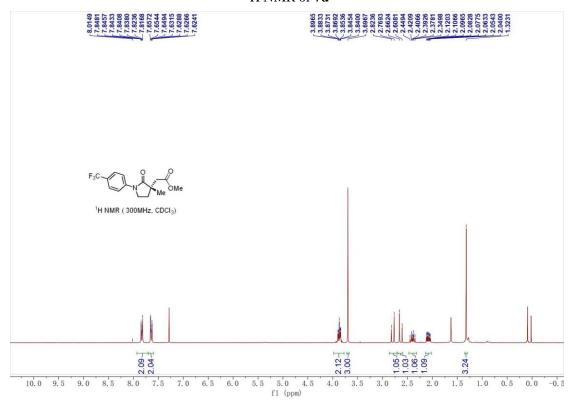




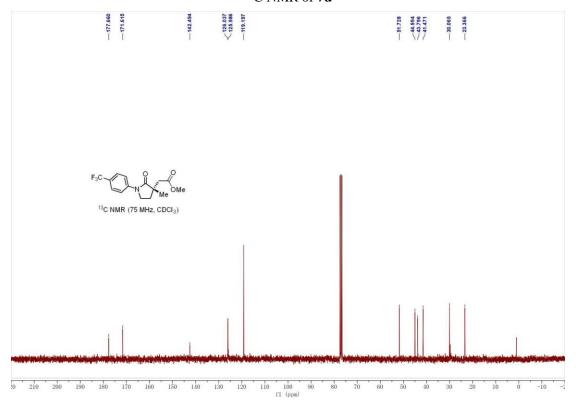


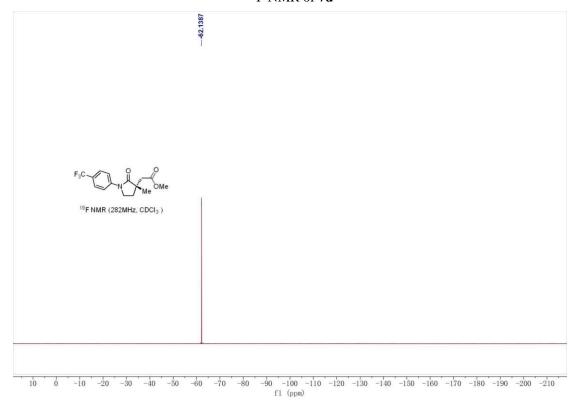



<sup>13</sup>C NMR of **7c** 

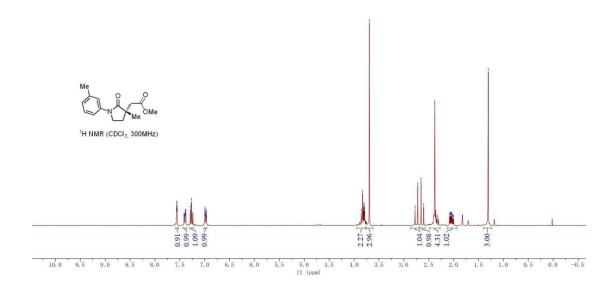






<sup>1</sup>H NMR of **7d** 



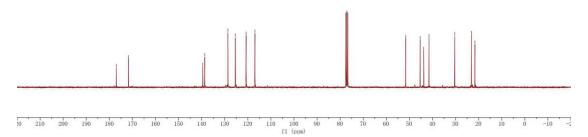
<sup>13</sup>C NMR of **7d** 




# <sup>19</sup>F NMR of **7d**

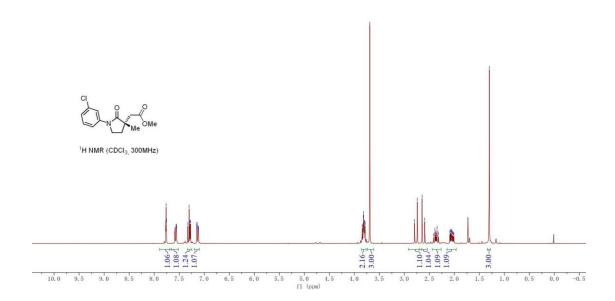






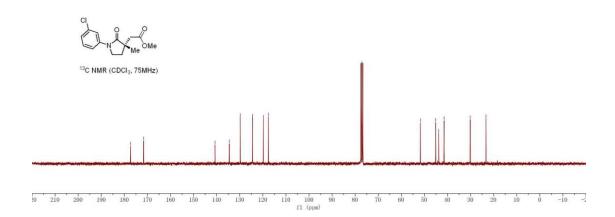



<sup>13</sup>C NMR of **7e** 

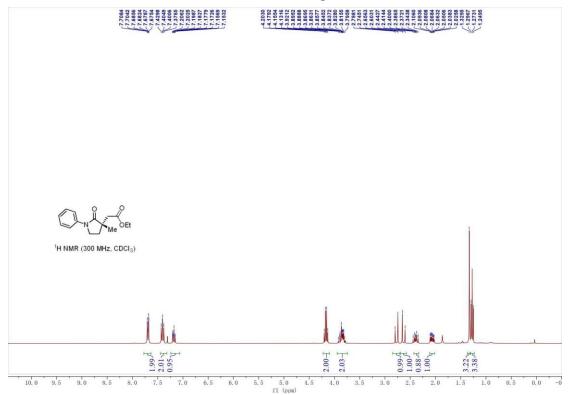

| —176.994<br>—171.747 | 139.518 | \\ \tag{2.128.640} \\ \tag{1.128.640} \\ \tag{2.126.409} \\ \tag{2.116.933} \\ 2.116 | -51.634<br>-43.329<br>-41.526<br>-30.366<br>-23.135 |
|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|



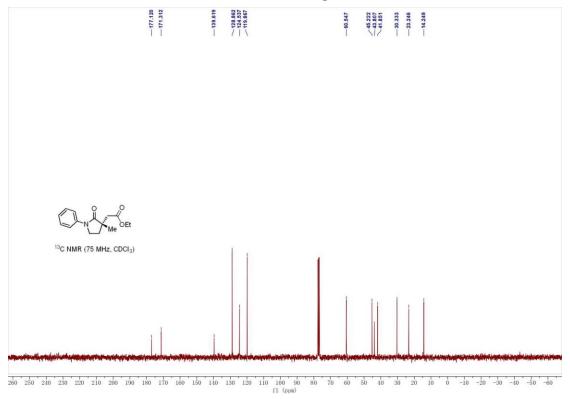



<sup>1</sup>H NMR of **7f** 

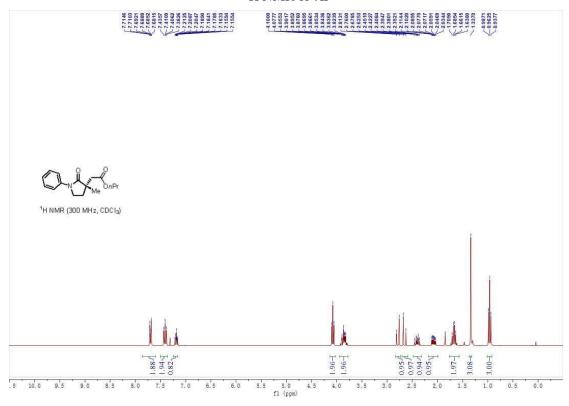




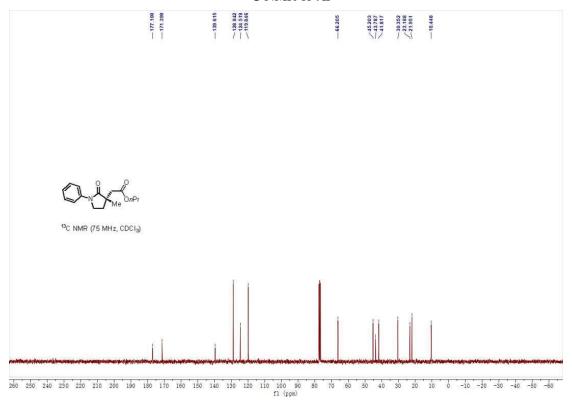

<sup>13</sup>C NMR of **7f** 


| -177.308 | 171.634 | 140.710 | 134.563 | 129.813 | 117.589 | \$1.694 | 45.108 | -30.134 | 23,310 |  |
|----------|---------|---------|---------|---------|---------|---------|--------|---------|--------|--|
| 1        | T       | 1       | 1       | 1       | 111     |         | 111    | T       | T      |  |



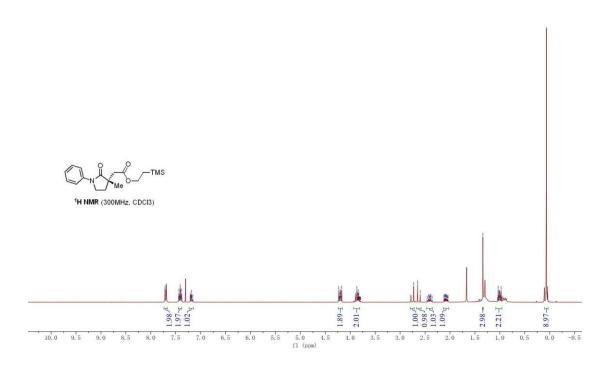

 $^{1}$ H NMR of 7g

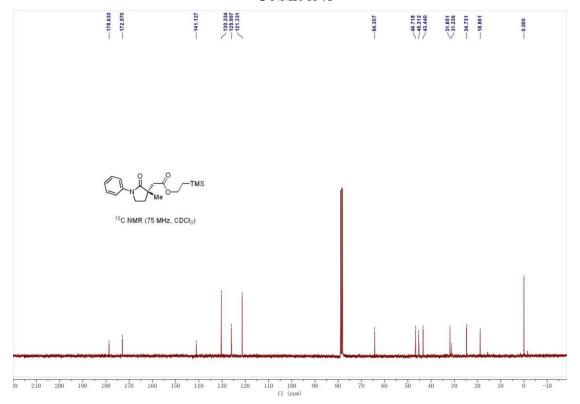



# $^{13}$ C NMR of 7g



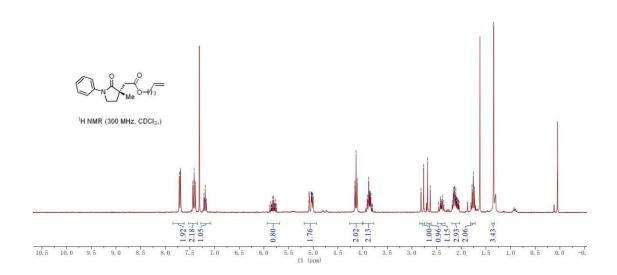
<sup>1</sup>H NMR of **7h** 





<sup>13</sup>C NMR of **7h** 



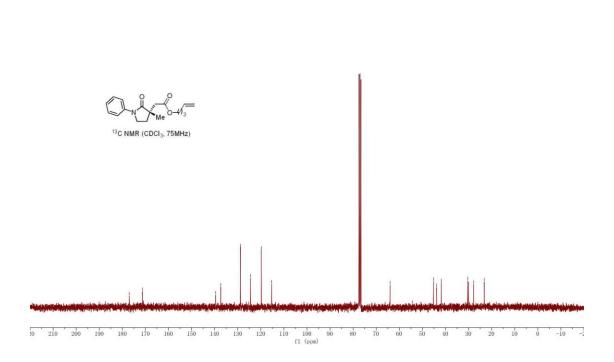




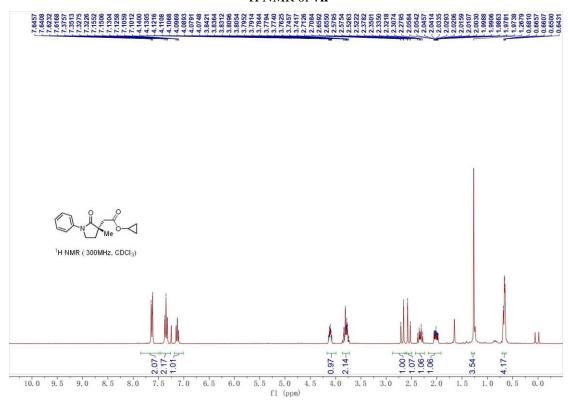




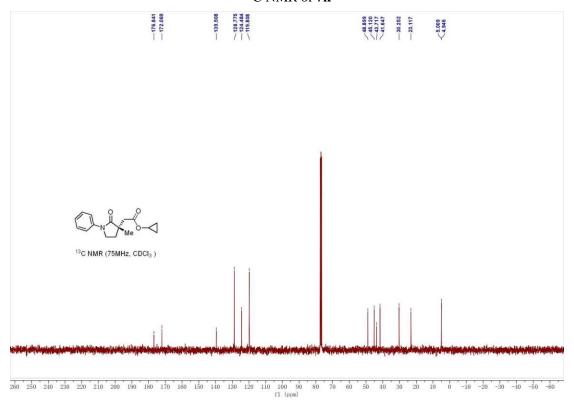


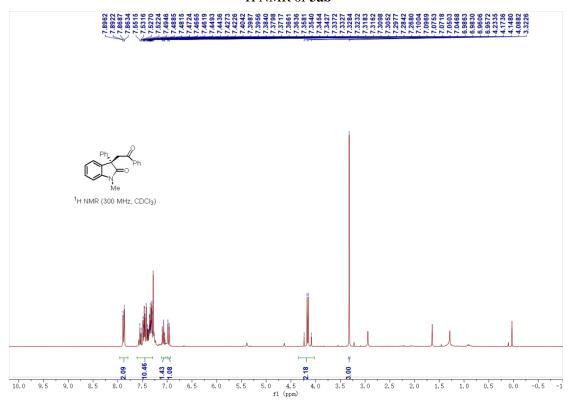




<sup>13</sup>C NMR of **7j** 

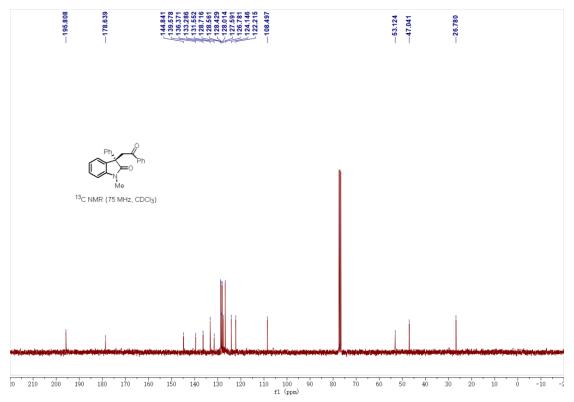
-64.016 -54.368 -43.791 -43.791 -30.359 -27.743


~139.596 ~137.383 ~128.844 ~124.516 ~119.812

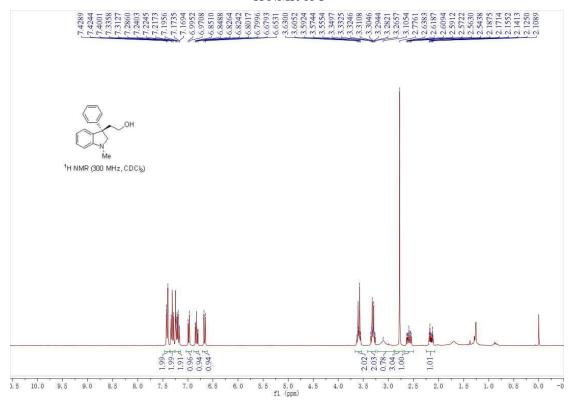



 $^{1}H$  NMR of 7k

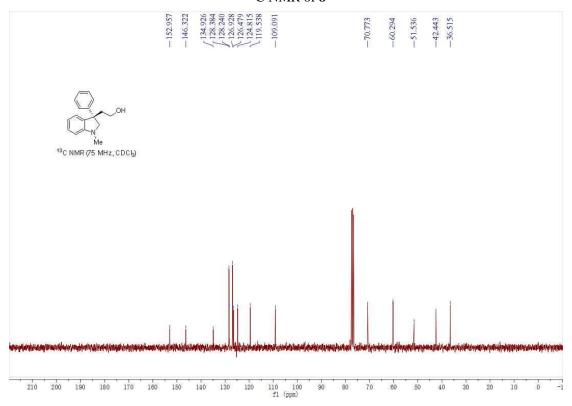



# $^{13}$ C NMR of 7k

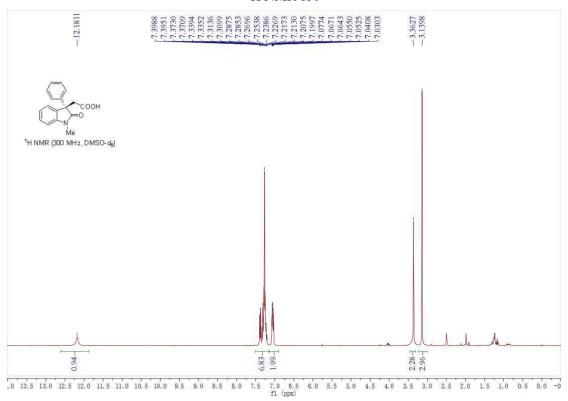


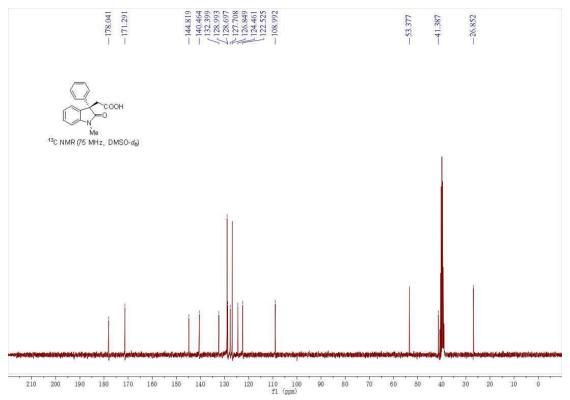

<sup>1</sup>H NMR of **3ab** 



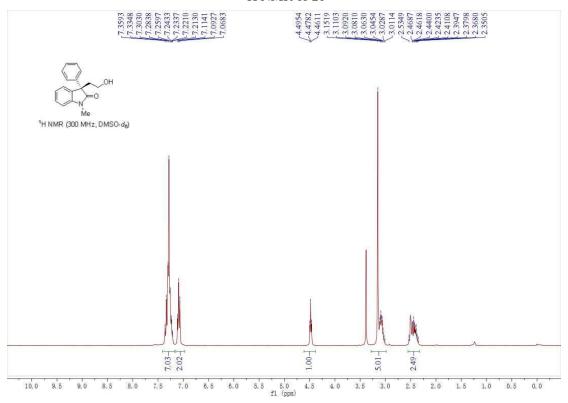

<sup>13</sup>C NMR of **3ab** 

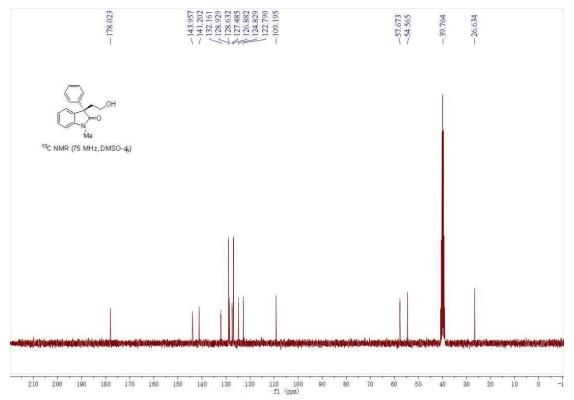



<sup>1</sup>H NMR of **8** 

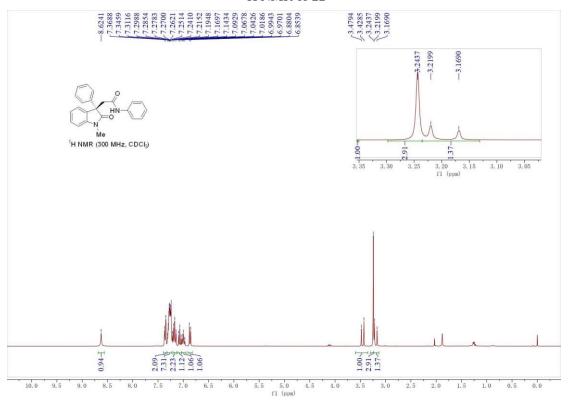


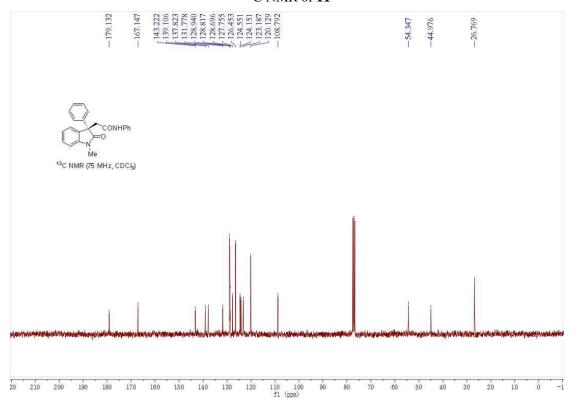

# $^{13}$ C NMR of **8**



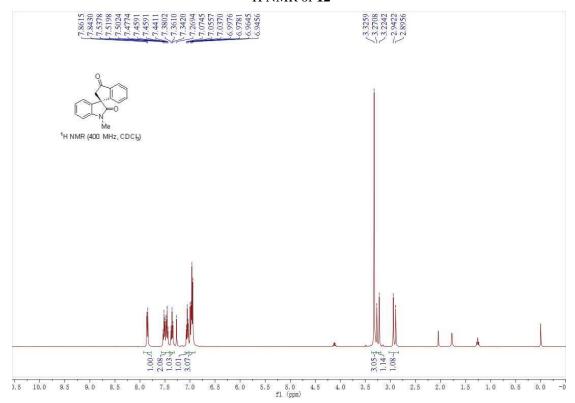


<sup>1</sup>H NMR of **9** 

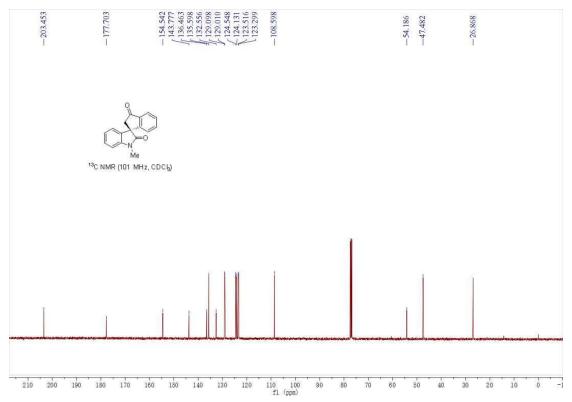




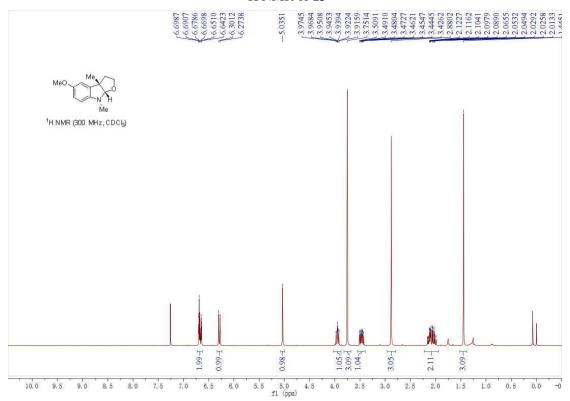


<sup>1</sup>H NMR of **10** 

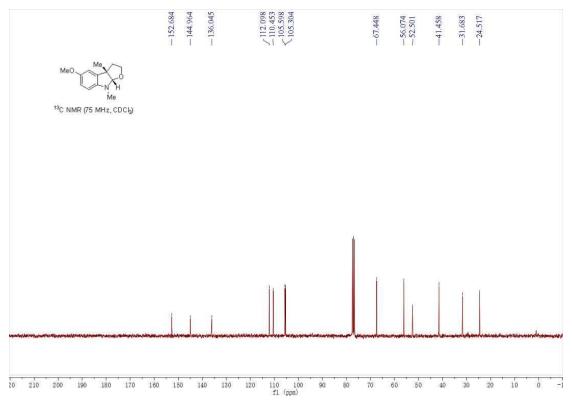






<sup>1</sup>H NMR of **11** 







<sup>1</sup>H NMR of **12** 





<sup>1</sup>H NMR of **13** 



